Math, asked by Sidrakasu12, 9 months ago

Using appropriate properties,find:
3/5×(-2/7)+3/2×1/5+(-2/7)×4/5
Please mention all the steps and properties used.

Answers

Answered by anathbandhubanerjee3
14

Answer:

-1÷10

Step-by-step explanation:

3/5×(-2/7)+3/2×1/5+(-2/7)×4/5=(-6/35)+3/10+(-8/35)

=(-12+21-16)/70=(-7/70)

=-1/10

Answered by payalchatterje
1

Answer:

Required answer is ( -  \frac{1}{10} )

Step-by-step explanation:

Given,

 \frac{3}{5}  \times ( -  \frac{2}{7} ) +  \frac{3}{2}  \times  \frac{1}{5}  +  ( - \frac{2}{7} ) \times  \frac{4}{5}

By Distributive property,

x \times y  +  x \times z = x(y + z)

So,

 ( - \frac{2}{7} )( \frac{3}{5}  +  \frac{4}{5} ) +  \frac{3}{2}  \times  \frac{1}{5}  \\ =  ( -  \frac{2}{7} )( \frac{3 + 4}{5} ) +  \frac{3}{2}  \times  \frac{1}{5}  \\  =  -  \frac{2}{7}  \times  \frac{7}{5}  +  \frac{3}{10}  \\  =  -  \frac{2}{5}  +  \frac{3}{10}  \\  =  \frac{ - 2 \times 2 + 3}{10}  \\  =  \frac{ - 4 + 3}{10}  \\  =  -  \frac{1}{10}

This is a problem of Algebra.

Some important Algebra formulas:

{(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\  {(x  -  y)}^{2}  =  {x}^{2}   -  2xy +  {y}^{2} \\  {(x  + y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  \\   {(x   -  y)}^{3}  =  {x}^{3}   -  3 {x}^{2} y + 3x {y}^{2}   -  {y}^{3} \\  {x}^{3}  +  {y}^{3}  =  {(x  +  y)}^{3}  - 3xy(x + y) \\ {x}^{3}   -  {y}^{3}  =  {(x   -   y)}^{3}   +  3xy(x  -  y) \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\    {x}^{2}  +  {y}^{2}  =  {(x - y)}^{2}   + 2xy \\ {x}^{2}   -  {y}^{2}  =  {(x   + y)}^{2}  - 2xy \\  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \\ {x}^{3}   +   {y}^{3}  = (x - + y)( {x}^{2}   -  xy +  {y}^{2} )

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions