Math, asked by prakashkis, 1 year ago

Using arithmetic mean write seven rational numbers between 12/5 and 10/3.

Answers

Answered by pinquancaro
8

Seven rational numbers between \frac{12}{5} and \frac{10}{3} are \frac{151}{60},\frac{79}{30},\frac{55}{20},\frac{43}{15},\frac{179}{60},\frac{31}{10},\frac{193}{60}

Step-by-step explanation:

To find : Using arithmetic mean write seven rational numbers between \frac{12}{5} and \frac{10}{3} ?

Solution :

Using arithmetic mean between \frac{12}{5} and \frac{10}{3}

Here,

First term is  a=\frac{12}{5}

Last term is l=\frac{10}{3}

Number of terms n=9

The last term formula is l=a+(n-1)d

\frac{10}{3}=\frac{12}{5}+(9-1)d

\frac{10}{3}-\frac{12}{5}=8d

\frac{50-36}{15}=8d

d=\frac{14}{15\times 8}

d=\frac{7}{60}

So, the seven rational rational number are

a_2=a+d

a_2=\frac{12}{5}+\frac{7}{60}

a_2=\frac{144+7}{60}

a_2=\frac{151}{60}

a_3=a+2d

a_3=\frac{12}{5}+2(\frac{7}{60})

a_3=\frac{12}{5}+\frac{7}{30}

a_3=\frac{79}{30}

a_4=a+3d

a_4=\frac{12}{5}+3(\frac{7}{60})

a_4=\frac{12}{5}+\frac{7}{20}

a_4=\frac{55}{20}

a_5=a+4d

a_5=\frac{12}{5}+4(\frac{7}{60})

a_5=\frac{12}{5}+\frac{7}{15}

a_5=\frac{43}{15}

a_6=a+5d

a_6=\frac{12}{5}+5(\frac{7}{60})

a_6=\frac{12}{5}+\frac{35}{60}

a_6=\frac{179}{60}

a_7=a+6d

a_7=\frac{12}{5}+6(\frac{7}{60})

a_7=\frac{12}{5}+\frac{7}{10}

a_7=\frac{31}{10}

a_8=a+7d

a_8=\frac{12}{5}+7(\frac{7}{60})

a_8=\frac{12}{5}+\frac{49}{60}

a_8=\frac{193}{60}

Therefore, seven rational numbers between \frac{12}{5} and \frac{10}{3} are \frac{151}{60},\frac{79}{30},\frac{55}{20},\frac{43}{15},\frac{179}{60},\frac{31}{10},\frac{193}{60}

#Learn more

Find rational number between 2 and 3find rational number between 2 and 3 ​

https://brainly.in/question/11413325

Answered by ItzGuriSidhu
4

Seven rational numbers between \frac{12}{5}

5

12

and \frac{10}{3}

3

10

are \frac{151}{60},\frac{79}{30},\frac{55}{20},\frac{43}{15},\frac{179}{60},\frac{31}{10},\frac{193}{60}

60

151

,

30

79

,

20

55

,

15

43

,

60

179

,

10

31

,

60

193

Step-by-step explanation:

To find : Using arithmetic mean write seven rational numbers between \frac{12}{5}

5

12

and \frac{10}{3}

3

10

?

Solution :

Using arithmetic mean between \frac{12}{5}

5

12

and \frac{10}{3}

3

10

Here,

First term is a=\frac{12}{5}a=

5

12

Last term is l=\frac{10}{3}l=

3

10

Number of terms n=9

The last term formula is l=a+(n-1)dl=a+(n−1)d

\frac{10}{3}=\frac{12}{5}+(9-1)d

3

10

=

5

12

+(9−1)d

\frac{10}{3}-\frac{12}{5}=8d

3

10

5

12

=8d

\frac{50-36}{15}=8d

15

50−36

=8d

d=\frac{14}{15\times 8}d=

15×8

14

d=\frac{7}{60}d=

60

7

So, the seven rational rational number are

a_2=a+da

2

=a+d

a_2=\frac{12}{5}+\frac{7}{60}a

2

=

5

12

+

60

7

a_2=\frac{144+7}{60}a

2

=

60

144+7

a_2=\frac{151}{60}a

2

=

60

151

a_3=a+2da

3

=a+2d

a_3=\frac{12}{5}+2(\frac{7}{60})a

3

=

5

12

+2(

60

7

)

a_3=\frac{12}{5}+\frac{7}{30}a

3

=

5

12

+

30

7

a_3=\frac{79}{30}a

3

=

30

79

a_4=a+3da

4

=a+3d

a_4=\frac{12}{5}+3(\frac{7}{60})a

4

=

5

12

+3(

60

7

)

a_4=\frac{12}{5}+\frac{7}{20}a

4

=

5

12

+

20

7

a_4=\frac{55}{20}a

4

=

20

55

a_5=a+4da

5

=a+4d

a_5=\frac{12}{5}+4(\frac{7}{60})a

5

=

5

12

+4(

60

7

)

a_5=\frac{12}{5}+\frac{7}{15}a

5

=

5

12

+

15

7

a_5=\frac{43}{15}a

5

=

15

43

a_6=a+5da

6

=a+5d

a_6=\frac{12}{5}+5(\frac{7}{60})a

6

=

5

12

+5(

60

7

)

a_6=\frac{12}{5}+\frac{35}{60}a

6

=

5

12

+

60

35

a_6=\frac{179}{60}a

6

=

60

179

a_7=a+6da

7

=a+6d

a_7=\frac{12}{5}+6(\frac{7}{60})a

7

=

5

12

+6(

60

7

)

a_7=\frac{12}{5}+\frac{7}{10}a

7

=

5

12

+

10

7

a_7=\frac{31}{10}a

7

=

10

31

a_8=a+7da

8

=a+7d

a_8=\frac{12}{5}+7(\frac{7}{60})a

8

=

5

12

+7(

60

7

)

a_8=\frac{12}{5}+\frac{49}{60}a

8

=

5

12

+

60

49

a_8=\frac{193}{60}a

8

=

60

193

Therefore, seven rational numbers between \frac{12}{5}

5

12

and \frac{10}{3}

3

10

are \frac{151}{60},\frac{79}{30},\frac{55}{20},\frac{43}{15},\frac{179}{60},\frac{31}{10},\frac{193}{60}

60

151

,

30

79

,

20

55

,

15

43

,

60

179

,

10

31

,

60

193

Similar questions