Using binomial theorem, find the value of:
i) (9.9)³
ii) (0.9)⁴
drashti5:
i will answer later....
Answers
Answered by
16
Solution :
************************************
Binomial theorem :
Let n be a positive integer and
x , a be real numbers. then
(x+a)ⁿ = ⁿC0xⁿa^0 +ⁿC1x^n-1a¹ +..
...+ⁿCnx^0aⁿ
***************************************
Here ,
i ) ( 9.9 )³
= ( 10 - 0.1 )³
= C0(10)³-C1(10)²(0.1)+C2(10)¹(0.1)²-C3(0.1)³
= 1000 - 3×100×0.1+3×10×(0.01)-(0.001)
= 1000 - 30 + 0.3 - 0.001
= 970.299
Therefore ,
( 9.9 )³ = 970.299
ii ) ( 0.9 )⁴
= ( 1 - 0.1 )⁴
= C01⁴-C1( 1 )³(0.1)+C2(1)²(0.1)²
-C3(1)(0.1)³+C4(0.1)⁴
= 1 - 4 × 0.1 + 6 × 0.01 - 4×0.001 + 0.0001
= 1 - 0.4 + 0.06 - 0.004 + 0.0001
= 1.0601 - 0.404
= 0.6561
Therefore ,
( 0.9 )⁴ = 0.6561
•••••
************************************
Binomial theorem :
Let n be a positive integer and
x , a be real numbers. then
(x+a)ⁿ = ⁿC0xⁿa^0 +ⁿC1x^n-1a¹ +..
...+ⁿCnx^0aⁿ
***************************************
Here ,
i ) ( 9.9 )³
= ( 10 - 0.1 )³
= C0(10)³-C1(10)²(0.1)+C2(10)¹(0.1)²-C3(0.1)³
= 1000 - 3×100×0.1+3×10×(0.01)-(0.001)
= 1000 - 30 + 0.3 - 0.001
= 970.299
Therefore ,
( 9.9 )³ = 970.299
ii ) ( 0.9 )⁴
= ( 1 - 0.1 )⁴
= C01⁴-C1( 1 )³(0.1)+C2(1)²(0.1)²
-C3(1)(0.1)³+C4(0.1)⁴
= 1 - 4 × 0.1 + 6 × 0.01 - 4×0.001 + 0.0001
= 1 - 0.4 + 0.06 - 0.004 + 0.0001
= 1.0601 - 0.404
= 0.6561
Therefore ,
( 0.9 )⁴ = 0.6561
•••••
Similar questions