Math, asked by bsanchita129, 10 months ago

using both subsititution method and elimination method solve 3x+2y=13 and 5x-3y=9​

Answers

Answered by amitkumar44481
58

AnsWer :

x= 3 and y = 2.

Given :

  • General equation a1x + b1y +c= 0. and a2x + b2y + c= 0.
  • We have equation, 3x+ 2y = 13. and 5x -3y = 9.

We have Method.

  • Elimination method.
  • Substitution method.
  • Cross Multiplication method.

Solution :

Let's try Elimination method

We have equation,

 \tt3x + 2y = 13. -  -  - (1)

 \tt5x - 3y = 9. -  -  - (2)

In equation 1 Multiply 3 and Equation 2 Multiply by 2, we get.

 \begin{aligned} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 9x +&6y =39 \\   10x -  &6y =18. \\ \end{aligned}

____________________________

 \begin{aligned} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  19x  = 57 \end{aligned}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = 3.

Now, Putting the value x = 3 in equation (1), we get.

 \implies3x + 2y = 13. \\  \implies9 + 2y = 13. \\  \implies2y = 4. \\  \implies y = 2.

\rule{200}3

Let's try Substitution method.

We have equation,

 \tt3x + 2y = 13. -  -  - (1)

 \tt5x  -  3y = 9. -  -  - (2)

Taking equation 3,

 \tt \implies5x = 9 + 3y. \\  \tt \implies  x =  \frac{9 + 3y}{5}  -  -  - (3)

Putting equation (3) in equation (1), we get

 \tt \implies3( \frac{ 9 + 3y}{5}) + 2y = 13.

 \tt \implies \frac{27 + 9y + 10y}{5}  = 13.

 \tt \implies27 + 19y = 65.

 \tt \implies19y = 38.

 \tt \implies y = 2.

Now, Putting the value of y in equation 3, we get.

 \tt \implies x =  \frac{9 + 3(2)}{5}

 \tt \implies x = \frac{15}{5}

 \tt \implies  x = 3.

Therefore, the value of x =3 and y= 2.

Answered by anshi60
33

\huge{\bold{ AnSwEr }}

x = 3 and y = 2

 \huge{ \underline{ \underline{ \red{ \sf{ SoLuTiOn :-}}}}}

By substitution method =>

3x + 2y = 13--------------(1)

5x - 3y = 9----------------(2)

from equ. (1) =>

3x + 2y = 13

3x = 13 - 2y

x =  \frac{13 - 2y}{3}

putting \: x =  \frac{13 - 2y}{3} \: in \: equ. \: (2) \\  \\ 5x - 3y = 9 \\  \\ 5( \frac{13 - 2y}{3}  ) - 3y = 9 \\  \\  \frac{65 - 10y}{3}  - 3y = 9 \\  \\ 65 - 10y - 9y = 27 \\  \\ 65 - 19y = 27 \\  \\  - 19y = 27 - 65 \\  \\  - 19y =  - 38 \\  \\ y =  \frac{38}{19}  \\  \\ y = 2 \\

Then the value of x =>

x =  \frac{13 - 2y}{3}  \\  \\ x =  \frac{13 - 2 \times 2}{3} \\  \\ x =  \frac{9}{3}  \\  \\ x = 3

By elimination method =>

3x + 2y = 13--------------(1)

5x - 3y = 9 ---------------(2)

Multiply by 5 in equ. (1) and 3 in equ. (2) =>

15x + 10y = 65 -----------(3)

15x - 9y = 27 -------------(4)

Subtracting equ. (3) and (4) =>

15x + 10y - ( 15x - 9y ) = 65 - 27

15x + 10y - 15x + 9y = 38

19y = 38

y = 38/19

y = 2

putting y = 2 in equ. (1) =>

3x + 2×2 = 13

3x = 13 - 4

3x = 9

x = 3

Here ,

{\purple{\boxed{\large{\bold{x = 3 \: and \: y = 2}}}}}

Similar questions