Physics, asked by frao7917, 9 months ago

Using calcus method prove that v²-u²=2as

Answers

Answered by shadowsabers03
1

We know that, acceleration,

\displaystyle\longrightarrow\sf{a=\dfrac{dv}{dt}}

\displaystyle\longrightarrow\sf{a=\dfrac{dv}{dx}\cdot\dfrac{dx}{dt}}

\displaystyle\longrightarrow\sf{a=\dfrac{dv}{dx}\cdot v}

\displaystyle\longrightarrow\sf{a\ dx=v\ dv}

Now, before integration,

  • integration is done for displacement from x = 0 to x = s.

  • integration is done for velocity from u to v.

Then,

\displaystyle\longrightarrow\sf{\int\limits_0^sa\ dx=\int\limits_u^vv\ dv}

Since acceleration is independent of displacement (motion is not simple harmonic),

\displaystyle\longrightarrow\sf{a\big[x\big]_0^s=\left[\dfrac{v^2}{2}\right]_u^v}

\displaystyle\longrightarrow\sf{a(s-0)=\dfrac{v^2-u^2}{2}}

\displaystyle\longrightarrow\sf{as=\dfrac{v^2-u^2}{2}}

\displaystyle\longrightarrow\sf{\underline{\underline{v^2-u^2=2as}}}

Hence the Proof!

Similar questions