Math, asked by hag25, 1 month ago

Using cofactors of elements of second row, evaluate |A| where A = |(1,-3,2) (-4,5,6) (3,-5,2)|​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \begin{gathered}\sf \left[\begin{array}{ccc}1&-3&2\\ - 4&5&6\\3&-5&2\end{array}\right]\end{gathered}

We know,

\rm :\longmapsto\: |A| = a_{21}c_{21} + a_{22}c_{22} + a_{23}c_{23}

Where,

\rm :\longmapsto\:a_{21} =  - 4

\rm :\longmapsto\:a_{22} =  5

\rm :\longmapsto\:a_{23} =  6

Now,

\rm :\longmapsto\:c_{21} =  {( - 1)}^{2 + 1}\begin{array}{|cc|}\sf  - 3 &\sf 2  \\ \sf  - 5 &\sf 2 \\\end{array} =  - ( - 6 + 10) =  - 4

\rm :\longmapsto\:c_{22} =  {( - 1)}^{2 + 2}\begin{array}{|cc|}\sf 1 &\sf 2  \\ \sf 3 &\sf 2 \\\end{array} = 2 - 6 =  - 4

\rm :\longmapsto\:c_{23} =  {( - 1)}^{2 + 3}\begin{array}{|cc|}\sf 1 &\sf  - 3  \\ \sf 3 &\sf  - 5 \\\end{array} =  - ( - 5 + 9) =  - 4

So, on substituting the values in

\rm :\longmapsto\: |A| = a_{21}c_{21} + a_{22}c_{22} + a_{23}c_{23}

we get ,

\rm :\longmapsto\: |A| =  - 4( - 4) + 5( - 4) + 6( - 4)

\rm :\longmapsto\: |A| = 16 - 20 - 24

\bf :\longmapsto\: |A| =  - 28

Additional Information :-

Properties of Co factors :-

\rm :\longmapsto\: |A| = a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}

\rm :\longmapsto\: |A| = a_{31}c_{31} + a_{32}c_{32} + a_{33}c_{33}

\rm :\longmapsto\: a_{31}c_{11} + a_{32}c_{12} + a_{33}c_{13} = 0

\rm :\longmapsto\: a_{31}c_{21} + a_{32}c_{22} + a_{33}c_{23} = 0

Similar questions