Math, asked by harshbhardwaj22, 2 months ago

Using cromer's rule,solve the following system of linear equations:
2x+3y=10
x+6y=4​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given system of equations are

2x + 3y = 10

x + 6y = 4

The matrix form of the equation is

\rm :\longmapsto\:A = \: \begin{bmatrix} 2 &  3\\ 1 & 6\end{bmatrix}

\rm :\longmapsto\:\begin{gathered}\sf B=\left[\begin{array}{c}10\\4\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf X=\left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

So that, .

\rm :\longmapsto\:AX = B

Now,

\rm :\longmapsto\: |A|  =  \: \begin{array}{|cc|}\sf 2 &\sf  3  \\ \sf 1 &\sf  6 \\\end{array}

\rm :\longmapsto\: |A|  = 12 - 3

\rm :\longmapsto\: |A|  = 9

\rm :\longmapsto\:As \:  |A| \ne \: 0

\rm :\implies\:Equations \: has \: unique \: solution

Consider,

\rm :\longmapsto\:D_1  =  \: \begin{array}{|cc|}\sf 10 &\sf  3  \\ \sf 4 &\sf  6 \\\end{array}

\rm :\longmapsto\:D_1 = 60 - 12

\rm :\longmapsto\:D_1 = 48

Consider,

\rm :\longmapsto\:D_2  =  \: \begin{array}{|cc|}\sf 2 &\sf  10  \\ \sf 1 &\sf  4 \\\end{array}

\rm :\longmapsto\:D_2 = 8 - 10

\rm :\longmapsto\:D_2 =  - 2

Therefore,

\rm :\longmapsto\:x = \dfrac{D_1}{ |A| } = \dfrac{48}{9} = \dfrac{16}{3}

\rm :\longmapsto\:y = \dfrac{D_2}{ |A| } = \dfrac{ - 2}{9} =  - \dfrac{2}{9}

Similar questions