Math, asked by Babla231, 1 year ago

Using cross multiplication method find 1/x+1/y=7,2/x+3/y=17

Answers

Answered by MaheswariS
7

\underline{\textbf{Given:}}

\mathsf{\dfrac{1}{x}+\dfrac{1}{y}=7}

\mathsf{\dfrac{2}{x}+\dfrac{3}{y}=17}

\underline{\textbf{To find:}}

\textsf{Solution of the given simultaneous equations}

\underline{\textbf{Solution:}}

\textsf{The given equations can be written as}

\mathsf{\dfrac{1}{x}+\dfrac{1}{y}-7=0}

\mathsf{2\left(\dfrac{1}{x}\right)+3\left(\dfrac{1}{y}\right)-17=0}

\textsf{Using Cross multiplication rule,}

\mathsf{\dfrac{\dfrac{1}{x}}{-17+21}=\dfrac{\dfrac{1}{y}}{-14+17}=\dfrac{1}{3-2}}

\mathsf{\dfrac{\dfrac{1}{x}}{4}=\dfrac{\dfrac{1}{y}}{3}=\dfrac{1}{1}}

\mathsf{\dfrac{\dfrac{1}{x}}{4}=\dfrac{1}{1}}

\mathsf{\dfrac{1}{x}=4}

\implies\boxed{\mathsf{x=\dfrac{1}{4}}}

\mathsf{and}

\mathsf{\dfrac{\dfrac{1}{y}}{3}=\dfrac{1}{1}}

\mathsf{\dfrac{1}{y}=3}

\implies\boxed{\mathsf{y=\dfrac{1}{3}}}

\therefore\mathsf{Solution\;is\;x=\dfrac{1}{4}\;and\;y=\dfrac{1}{3}}

\underline{\textbf{Find more:}}

2x+y=35;3x+4y=65 solve by using cross multiplication method

https://brainly.in/question/5001719  

Solve each of the following systems of equations by the method of cross-multiplication:

ax + by = a²

bx + ay = b²

https://brainly.in/question/15918815  

Solve each of the following systems of equations by the method of cross-multiplication:

a²x+b²y=c²b²x+a²y=a²

https://brainly.in/question/15918831

Answered by devkaraandawee997
5

Step-by-step explanation:

Is is the very good answer please like me in brainest

Similar questions