Math, asked by meneha2001, 9 months ago

using differentials find the approximate value of (1.999)^5​

Answers

Answered by Unni007
20

Let,

  • x = 2
  • △x = -0.001    [∵ 2-0.001 = 1.999]

Let,

  • y = x⁵

On differentiating both sides with respect to x , we get  

\sf{\dfrac{dy}{dx}=5x^4}

\boxed{\sf{\Delta y=\dfrac{dy}{dx}\Delta x}}

Applying the value to the equation,

\implies\sf{\Delta y=5x^4\times \Delta x}

Here,

  • x = 2
  • △x = -0.001

Applying the values to the equation,

\implies\sf{\Delta y = 5\times 2^4 \times (-0.001)}

\implies\sf{\Delta y = 5\times 16 \times (-0.001)}

\implies\sf{\Delta y = 80\times (-0.001)}

\implies\sf{\Delta y = -0.080}

We know,

\boxed{\sf{(1.999)^5=y + \Delta y}}

Applying the values to the equation,

\implies\sf{(1.999)^5=2^5-(0.080)}

\implies\sf{(1.999)^5=32-0.080}

\implies\sf{(1.999)^5\approx 31.920}

Therefore,

\boxed{\bold{\sf{(1.999)^5\approx 31.920}}}

Similar questions