Math, asked by khushi15686, 1 month ago

Using differentials, find the intervals of increasing and decreasing for

f(x) =  {(x - 1)}^{2} (x - 3)^{2}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {(x - 1)}^{2}  {(x - 3)}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx} {(x - 1)}^{2}  {(x - 3)}^{2}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}uv = u\dfrac{d}{dx}v + v\dfrac{d}{dx}u \: }}

So, using this, we get

\rm :\longmapsto\:f'(x) =  {(x - 1)}^{2}\dfrac{d}{dx} {(x - 3)}^{2} +  {( x - 3)}^{2} \dfrac{d}{dx} {(x - 1)}^{2}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n}  \:  =  \:  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:f'(x) =  {(x - 1)}^{2} \times 2(x - 3) +  {(x - 3)}^{2} \times 2(x - 1)

\rm :\longmapsto\:f'(x) = 2(x - 1)(x - 3)(x - 1 + x - 3)

\rm :\longmapsto\:f'(x) = 2(x - 1)(x - 3)(2x - 4)

\rm :\longmapsto\:f'(x) = 4(x - 1)(x - 3)(x - 2)

So, critical points are

\rm :\longmapsto\:\boxed{ \tt{ \: x = 1, \: 2, \: 3 \: }}

Now, Let we check the sign of f'(x) in the intervals.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ( -  \infty ,1) & \sf  - ve \\ \\ \sf (1,2) & \sf  + ve \\ \\ \sf (2,3) & \sf  - ve\\ \\ \sf (3, \infty ) & \sf  + ve \end{array}} \\ \end{gathered}

So,

For increasing,

\rm :\longmapsto\:f'(x) > 0

\bf\implies \:x \:  \in \: (1,2) \:  \cup \: (3, \infty )

And

For decreasing

\rm :\longmapsto\:f'(x)  <  0

\bf\implies \:x \:  \in \: ( -  \infty ,1) \:  \cup \: (2,3)

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions