Math, asked by madhav5245, 1 month ago

Using differentiation find the approximate value of

 {(1.999)}^{5}

Answers

Answered by Anonymous
0

Answer:

the correct answer is 31.9 that is 32 approximately

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) =  {x}^{5} \:  \:  \: where \: x = 2

So,

\rm :\longmapsto\:f(x + h) =  {(x + h)}^{5} \:  \:  \: where \: x =  - 0.001

By using definition of differentiation, we have

\rm :\longmapsto\:\boxed{ \tt{ \: f(x + h) = f(x) + h \times f'(x) \: }}

On substituting the values, we get

\rm :\longmapsto\: {(x + h)}^{5} =  {x}^{5} + h \times \dfrac{d}{dx} {x}^{5}

\rm :\longmapsto\: {(x + h)}^{5} =  {x}^{5} + h \times  {5x}^{5 - 1}

\rm :\longmapsto\: {(x + h)}^{5} =  {x}^{5} + h \times  {5x}^{4}

\rm :\longmapsto\: {(x + h)}^{5} =  {x}^{5} + {5hx}^{4}

On substituting the values of x and h, we get

\rm :\longmapsto\: {(2 - 0.001)}^{5} =  {2}^{5} + (5)( - 0.001) {2}^{4}

\rm :\longmapsto\: {(1.999)}^{5} = 32 - 0.08

\rm :\longmapsto\: {(1.999)}^{5} = 31.92

Hence,

 \purple{\rm \implies\:\: \boxed{ \tt{ \: {(1.999)}^{5} = 31.92 \: }}}

More to know :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions