Math, asked by madhav5245, 1 month ago

Using differentiation find the approximate value of
 \sqrt{0.037}

Answers

Answered by musiclover5555
0

Answer:

hi rey ,

how are u ..?

Step-by-step explanation:

hope it helps u ..

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) =  \sqrt{x}  \:  \: where \: x = 0.0361

So,

\rm :\longmapsto\:f(x + h) =  \sqrt{x + h}  \:  \: where \: x = 0.0009

By using definition, we get

\rm :\longmapsto\:\boxed{ \tt{ \: f(x + h) = f(x) + h \times f'(x) \: }}

So, on substituting the values, we get

\rm :\longmapsto\: \sqrt{x + h}  =  \sqrt{x} + h \times \dfrac{d}{dx} \sqrt{x}

\rm :\longmapsto\: \sqrt{x + h}  =  \sqrt{x} + h \times \dfrac{1}{2 \sqrt{x} }

On substituting the values of x and h, we get

\rm :\longmapsto\: \sqrt{0.0361 + 0.0009}  =  \sqrt{0.0361} + \dfrac{0.0009}{2 \times  \sqrt{0.0361} }

\rm :\longmapsto\: \sqrt{0.037} =  \sqrt{\dfrac{361}{10000} }  + \dfrac{0.0009}{2 \times  \sqrt{\dfrac{361}{10000} } }

\rm :\longmapsto\: \sqrt{0.037} = \dfrac{19}{100} + \dfrac{9}{10000 \times 2 \times \dfrac{19}{100} }

\rm :\longmapsto\: \sqrt{0.037} = 0.19+ \dfrac{9}{3800}

\rm :\longmapsto\: \sqrt{0.037} = 0.19+ 0.0024

\rm :\longmapsto\: \sqrt{0.037} =  0.1924

 \pink{\rm \implies\:\boxed{ \tt{ \: \: \sqrt{0.037} =  0.1924}}}

More to know :-

 \pink{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions