Math, asked by Anonymous, 2 months ago

Using differentiation method, Solve the above sum ( Class - 12 ).​

Attachments:

Answers

Answered by chandanapukalyani
1

if we have to find w value:

differentiate again w.r.t w

3(2w)-10

6w-10

again differentiate

we get 6.

d³w/dw³ =6.

Attachments:
Answered by TheGodWishperer
1

\huge\mathtt\pink{A}\mathtt\red{N}\mathtt\blue{S}\mathtt\green{W}\mathtt\purple{E}\mathtt\green{R}

Solution:-

 \large\\:  \:  \:  \:  \:  \:  \: \rightarrow\mathtt \red{to \: differentiate} \mathtt \blue{ \: ( \omega - 5)( { \omega }^{2} + 1) }

\\:  \:  \:  \:  \:  \:  \:  \rightarrow \mathtt \green{differentiation}  \mathtt \blue{\Darr}

 \large\\:  \:  \:  \:  \:  \:  \: \rightarrow\mathtt \purple{ \frac{d(\omega - 5)( { \omega }^{2} + 1)}{d \omega}  }

 \large\\:  \:  \:  \:  \:  \:  \: \rightarrow\mathtt \orange{ \frac{d({ \omega }^{3} +  \omega - 5 { \omega}^{2}   - 5)}{d \omega}  }

\large\\:  \:  \:  \:  \:  \:  \: \rightarrow\mathtt \pink{ 3 { \omega}^{2}  + 1 - 10 \omega}

\large\:  \:  \:  \:  \:  \:  \:  \\: \mathfrak \green {answer}\rightarrow\mathtt \pink{ \boxed{ 3 \omega^{2}  + 1 - 10 \omega \: }}

#Together we go far

Similar questions