Physics, asked by vamugsw8379, 9 months ago

Using dimensional analysis, derive an expression for centripetal force which may depend on mass m of a body moving with uniform velocity v in circular path of radius r?

Answers

Answered by shadowsabers03
53

Let centripetal force depend on mass m, velocity v and radius r as follows,

\longrightarrow\sf{F\propto m^x\ v^y\ r^z\quad\quad\dots(1)}

Taking dimensions of each term,

\longrightarrow\sf{[F]=[m]^x\ [v]^y\ [r]^z}

\longrightarrow\sf{MLT^{-2}=M^x\ (LT^{-1})^y\ L^z}

\longrightarrow\sf{MLT^{-2}=M^x\ L^{y+z}\ T^{-y}}

Equating the corresponding powers

\longrightarrow\sf{\underline{\underline{x=1}}}

\longrightarrow\sf{-y=-2\ \implies\ \underline{\underline{y=2}}}

\longrightarrow\sf{y+z=2+z=1\ \implies\ \underline{\underline{z=-1}}}

Then (1) becomes,

\longrightarrow\sf{F\propto m^1\ v^2\ r^{-1}}

\longrightarrow\sf{\underline{\underline{F\propto\dfrac{mv^2}{r}}}}

\longrightarrow\sf{F=k\cdot\dfrac{mv^2}{r}}

where 'k' is a constant. But practically, k = 1. Hence,

\longrightarrow\sf{\underline{\underline{F=\dfrac{mv^2}{r}}}}

Answered by pAvIKTm46
12

Answer:

Hopes it help❤️

Have a nice day

Attachments:
Similar questions