using dimentional analysis check the correctness of the given physical equation v= u + at
Answers
Answered by
0
Answer:
L.H.S=v=[LT^-1]
R.H.S=u+at=[LT^-1]+[LT^-2].[T]
=[LT^-1][LT^-1]=2[LT^-1]=[LT^-1]
so L.H.S=R.H.S
Explanation:
remember that constant has no dimensions
Answered by
1
Given equation :-
v = u + at
We know,
- dimensional formula of v = (M⁰LT⁻¹)
- dimensional formula of u = (M⁰LT⁻¹)
- dimensional formula of a = (M⁰LT⁻²)
- dimensional formula of t = (M⁰L⁰T)
→ LHS is the dimensional formula of v = (M⁰LT⁻¹)
→ RHS = dimensional formula of u + dimensional formula of a × dimensional formula of t
= (M⁰LT⁻¹) + (M⁰LT⁻²) × (M⁰L⁰T)
= (M⁰LT⁻¹) + (M⁰LT⁻¹)
= 2(M⁰LT⁻¹)
2 is a dimensionless constant, so LHS = RHS
Hence,the given relationship(equation) is dimensionally correct.
Similar questions