Math, asked by harpreetthakur9876, 1 year ago

using distance formula determine if the points [1,5],[2,3]and [-2,-11] are collinear

Answers

Answered by riyarajeendran
2
here is ur answer.. mark it as brainiest..
Attachments:

riyarajeendran: ur welcome
Answered by Anonymous
4

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf Let A(1 , 5) , \: B(2 , 3) , \: C(-2 , -11)



\bf\huge AB= \sqrt{(2 - 1)^2 + (3 - 5)^2}



\bf\huge = \sqrt{1^2 + (-2)^2}



\bf\huge = \sqrt{1 + 4} = \sqrt{5}



\bf\huge BC = \sqrt{(-2 - 2)^2 + (-11 - 3)^2}



\bf\huge BC = \sqrt{(-4)^2 + (-14)^2}



\bf\huge BC = \sqrt{16 + 196}



\bf\huge BC = \sqrt{212}



\bf\huge AB = \sqrt{4\times 53} = 2\sqrt{53}



\bf\huge AC = \sqrt{(-2 - 1)^2 + ( - 11 - 5)^2}



\bf\huge AC = \sqrt{(-3)^2 + (- 16)^2}



\bf\huge AC = \sqrt{9 + 256} = \sqrt{265}



\bf\huge Hence \:A , B\: and \:C\: are\: not\: collinear




\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions