Math, asked by babitanivash3434, 5 months ago

using distance formula, show that points(-3,2),(1,-2)and(9,-10)are collinear

Answers

Answered by Ataraxia
20

Solution :-

Let the points be A ( -3 , 2 ), B ( 1 , -2 ) and C ( 9 , -10 ).

\underline{\boxed{\bf Distance \ formula = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} }}

\bullet \sf \ AB = \sqrt{(1-(-3))^2+(-2-2)^2}

        = \sf \sqrt{(1+3)^2+(-2-2)^2}  \\\\= \sqrt{4^2+(-4)^2} \\\\= \sqrt{16+16} \\\\=\sqrt{2 \times 16} \\\\= 4\sqrt{2}  \ units

\bullet \sf \ BC = \sqrt{(9-1)^2+(-10-(-2))^2}

        = \sf \sqrt{(9-1)^2+(-10+2)^2}  \\\\= \sqrt{8^2+(-8)^2} \\\\= \sqrt{64+64} \\\\= \sqrt{64 \times 2 } \\\\= 8\sqrt{2}  \ units

\bullet \sf \ AC = \sqrt{(9-(-3))^2+(-10-2)^2}

        = \sf \sqrt{(9+3)^2+(-10-2)^2} \\\\= \sqrt{12^2+(-12)^2} \\\\= \sqrt{144+144} \\\\= \sqrt{2 \times 144} \\\\= 12 \sqrt{2}  \ units

AB + BC = \sf 4 \sqrt{2} + 8 \sqrt{2}

              = \sf 12 \sqrt{2}

           

∴ AB + BC = AC

The given points are collinear.

Answered by rayul
6

Answer:

Given :

  • (-3,2),(1,-2)and(9,-10)

To Find :

  • show that points(-3,2),(1,-2)and(9,-10)are collinear

Solution :

Let A( x1 , y1 ) , B( x2 , y2 ) are the

two points ,

Distance between A and B

= AB

= √ ( x2 - x1 )² + ( y2 - y1 )²

Concept :

Distance formula is the formula to measure distance between two points

  • In the case of polygons, distance formula between 2 points are distance = √(x2 - x1)²+(y2-y1)²

 \large{ \underline{ \bf Formula \:  to \:  be  \: used : }}

 \bf{Distance \:  formula : } \sf If \:( x _{1} , y_{1}) \: and \: (x_{2} , y_{2}) \\  \\

Substitute all Values :

Now calculating AB , BC and AC by using distance formula :

First calculate AB

\sf :\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AB = \sqrt{(-2 - 2)^{2} + (1 + 3)^{2} } \\\\ \\\sf :\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AB = \sqrt{(-4)^{2} + (4)^{2} } \\  \\  \\   \sf  : \implies\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AB = \sqrt{16+16} \\\\ \\  \sf : \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:AB = 4\sqrt{2}

Calculate BC

\sf  :\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:BC = \sqrt{(-10+2)^{2} + (9 - 1)^{2} } \\\\\\\sf  :\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:BC = \sqrt{(-8)^{2} + (8)^{2} }\\\\\\ \sf:\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC = \sqrt{64 + 64} \\\\  \\ \sf:\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:BC = 8\sqrt{2}

Calculate AC

\sf :\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:AC = \sqrt{(-10-2)^{2} +(9+3)^{2} } \\\\ \\ \sf :\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:AC = \sqrt{(-12)^{2} +(12)^{2} } \\\\ \\ \sf:\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AC = \sqrt{144 + 144} \\ \\\\ \sf:\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AC =  12\sqrt{2}

Now Adding the Value of AB and BC :

How To Determine If Points Are Collinear ?

  • Slope formula method to find that points are collinear. Three or more points are collinear, if slope of any two pairs of points is same. With three points A, B and C, three pairs of points can be formed, they are: AB, BC and AC. If Slope of AB = slope of BC = slope of AC, then A, B and C are collinear points.

\sf:\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AB + BC = 4\sqrt{2}+8\sqrt{2} \\\\\\ \sf:\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AB + BC = 12\sqrt{2} \\\\\\ \sf:\implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AB + BC = AC

  • Hence he points are A(-3,2) , B(1,-2) and C(9, -10) collinear.
Similar questions