Math, asked by neeluyadav1883, 3 months ago

using distance formula show that the points (1 5) (2 4) and (3 3) are collinear​

Answers

Answered by Ekaro
28

Solution :

Let the points be A(1 , 5), B(2 , 4) and C(3 , 3).

\bf\dag\boxed{\bf Distance \ formula = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} }

\bullet\sf \ AB = \sqrt{(2-1)^2+(4-5)^2}

\:\:\:\qquad= \sf \sqrt{1^2+(-1)^2}

\:\:\:\qquad= \sf \sqrt{1+1}

\:\:\:\qquad= \sf \sqrt{2} \ units

\bullet\sf \ BC = \sqrt{(3-2)^2+(3-4)^2}

\:\:\:\qquad= \sf \sqrt{1^2+(-1)^2}

\:\:\:\qquad= \sf \sqrt{1+1}

\:\:\:\qquad= \sf \sqrt{2} \ units

\bullet\sf \ AC = \sqrt{(3-1)^2+(3-5)^2}

\:\:\:\qquad= \sf\sqrt{2^2+(-2)^2}

\:\:\:\qquad= \sf \sqrt{4+4}

\:\:\:\qquad= \sf \sqrt{8}

 \:\:\:\qquad= \sf 2 \sqrt{2} \ units

AB + BC = √2 + √2

= 2√2 units

= AC

AB + BC = AC

Hence, the points A( 1 , 5 ), B(2 , 4 ) and C( 3 , 3 ) are collinear.

Answered by Anonymous
180

Solution :-

  • Let the points be A(1 , 5) , B(2 , 4) , C(3 , 3) .

\boxed{\bf{Distance~formula~=~ \sqrt{( x_{2}  } -  x_{1})² + (  y_{2} -  x_{1})²}}

{\sf{AB}} {\sf{ = \sqrt{(2 - 1)² + (4 - 5)²} }}

 \:  \: \:\:\:\:\:\: \: \: {\sf{=  \sqrt{1² + ( - 1)²}}}

 \:  \: \:\:\:\:\:\: \:\: {\sf{ =  \sqrt{1 + 1} }}

 \:  \:\: \:\:\:\:\:\: \:  {\sf{= \sqrt{2}\:units}}

{\sf{BC}}  {\sf{=  \sqrt{(3 - 2)² + (3 - 4)²}}}

 \:  \:  \:\:\:\:\:\:\:\: {\sf{=  \sqrt{1² + ( - 1)²} }}

 \:  \:\: \: \:\:\:\:\:\: {\sf{ =  \sqrt{1 + 1} }}

 \:  \:\:\: \:\:\:\:\: \: {\sf{=  \sqrt{2}\:units}}

{\sf{AC}} {\sf{ =  \sqrt{(3 - 1)² + ( - 5)²}}}

 \:  \: \:\:\:\:\:\:\: \: {\sf{ =  \sqrt{2² + ( - 2)²} }}

 \:  \:\: \:\:\:\:\:\: \: {\sf{ =  \sqrt{4 + 4}}}

 \:  \: \:\:\:\:\:\: \:\: {\sf{ =  \sqrt{8} }}

 \:  \:\:\:\:\:  \:\:\:\: {\sf{=\sqrt{2} \:units}}

AB + BC {\sf{ =\sqrt{2}  +  \sqrt{2}}}

 \: \:\:\: \:\:\:\:\:\: \:\:\:\:\:\:\: \: {\sf{= \:2 \sqrt{2}  \: units}}

 \: \:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:  \: {\sf{=\:AC}}

.°. AB + BC = AC

Hence,

  • The points A(1 , 5) , B(2 ,4) and C(3 , 3) are collinear. \large{\bf\green{✓}}
Similar questions