Math, asked by shresth23jul, 9 months ago

using division find 2x-3 is a factor of 6x³+x²-19x+6 or not I just want to know wether it is factor or not i also want full explaination also​

Answers

Answered by kkee
3

2x-3 is a factor of 6x³+x²-19x+6

Attachments:
Answered by brainlysage72
7

\large{\red{\underline{\underline{\bold{Given:-}}}}}

  • Using division find 2x-3 is a factor of 6x³+x²-19x+6 or use factor or remainder theorem to find if its a factor

\large{\blue{\underline{\underline{\bold{To Find:-}}}}}

  • Whether 2x-3 is a factor of 6x³+x²-19x+6 by long divison or remainder theorem or factor theorem

\large{\green{\underline{\underline{\bold{Solution:-}}}}}

Let p(x)= 6x³+x²-19x+6 and f(x)= 2x-3

Remainder theorem or Factor theorem says that when p(x) is divided by f(x) then the value of x is x=3/2. So substitute the value of x in p(x)

\longrightarrow p(x)= 6x³+x²-19x+6

\longrightarrow p(3/2)= 6(3/2)³+(3/2)²-19(3/2)+6

\longrightarrow p(3/2)= 6(27/8)+9/4-57/2+6

\longrightarrow p(3/2)= 81/4+9/4-57/2+6

\longrightarrow p(3/2)= 81+9-114+24/4

\longrightarrow p(3/2)= 114-114/4

\longrightarrow p(3/2)= 0/4= 0

\long{\pink{\underline{\underline{\bold{Long Divison:-}

  • 2x-3)6x³+x²-19x+6(3x²+2x-2
  • 6x³-9x²
  • ----------------------------
  • 10x²-19x
  • 10x²-6x
  • ----------------------------
  • -4x+6
  • -4x+6
  • --------------------------
  • 0
  • ----------------------------

  • As we got remainder as 0 2x-3 is a factor of 6x³+x²-19x+6
Similar questions