using euclid division algorithm find the largest no. that divides 1251,9377&15628 leaving remainder 1 ,2,3 .
Answers
Answered by
19
•Yash is here for help you :)
• See my all steps :)
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
Finding HCF of :-
=>1251-1=1250
=>9377-2=9375
=>15628-3=15625
# H•C•F of 1250 and 9375 :-
=>9375=1250×7+625
=>1250=625×2+0
: Now H•C•F will be 625
: Find H•C•F of all three numbers :-
=>15625=625×25+0.
# Since the H•C•F will be 625........ Answer
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
• See my all steps :)
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
Finding HCF of :-
=>1251-1=1250
=>9377-2=9375
=>15628-3=15625
# H•C•F of 1250 and 9375 :-
=>9375=1250×7+625
=>1250=625×2+0
: Now H•C•F will be 625
: Find H•C•F of all three numbers :-
=>15625=625×25+0.
# Since the H•C•F will be 625........ Answer
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
Answered by
13
Hey friend, Harish here.
Here is your answer:
Given ,
i)Three numbers, 1251 , 9377 & 15628 leaves remainder 1,2,3 respectively when divided by a number.
To find,
The largest number that divides them leaving those remainder.
Solution,
Let the largest number that divides them b 'x'.
Now, When we subtract the remainders from the number x will divide them perfectly.
Then,
→ 1251 - 1 = 1250
→ 9377 - 2 = 9375
→ 15628 - 3 = 15625 .
As 1250, 9375 & 15625 are exactly divisible by x.Then x must be the HCF of them.
So, First (HCF 15625 & 9375 )
15625 = 9375 × 1 + 6250 (using, a = b(q) + r )
⇒9375 = 6250 × 1 + 3125
⇒6250 = 3125 × 2 + 0 .
So, HCF of ( 15625 & 9375 ) is 3125.
Now, We must find HCF of (3123 & 1250 ) to get HCF of all three numbers.
Then,
3125 = 1250 × 2 + 625.
1250 = 625 × 2 + 0.
So, HCF of all three numbers is 625.
Therefore 625 is the largest number which divides 1251, 9377, 15628 leaving remainders 1, 2 , 3 respectively.
__________________________________________________
Hope my answer is helpful to you.
Here is your answer:
Given ,
i)Three numbers, 1251 , 9377 & 15628 leaves remainder 1,2,3 respectively when divided by a number.
To find,
The largest number that divides them leaving those remainder.
Solution,
Let the largest number that divides them b 'x'.
Now, When we subtract the remainders from the number x will divide them perfectly.
Then,
→ 1251 - 1 = 1250
→ 9377 - 2 = 9375
→ 15628 - 3 = 15625 .
As 1250, 9375 & 15625 are exactly divisible by x.Then x must be the HCF of them.
So, First (HCF 15625 & 9375 )
15625 = 9375 × 1 + 6250 (using, a = b(q) + r )
⇒9375 = 6250 × 1 + 3125
⇒6250 = 3125 × 2 + 0 .
So, HCF of ( 15625 & 9375 ) is 3125.
Now, We must find HCF of (3123 & 1250 ) to get HCF of all three numbers.
Then,
3125 = 1250 × 2 + 625.
1250 = 625 × 2 + 0.
So, HCF of all three numbers is 625.
Therefore 625 is the largest number which divides 1251, 9377, 15628 leaving remainders 1, 2 , 3 respectively.
__________________________________________________
Hope my answer is helpful to you.
HarishAS:
Pls feel free to ask doubts.
Similar questions
Social Sciences,
8 months ago
Science,
1 year ago
History,
1 year ago
English,
1 year ago
Math,
1 year ago