Math, asked by nishilkpatel, 5 hours ago

using Euclid's division algorithm, find HCF of 441, 567, 693​

Answers

Answered by ayushkumarmirzaganj
1

PLEASE MARK ME AS BRAINLIST

The Euclidean Algorithm for finding HCF (A,B) is as follows:

The Euclidean Algorithm for finding HCF (A,B) is as follows:If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  

The Euclidean Algorithm for finding HCF (A,B) is as follows:If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.  

The Euclidean Algorithm for finding HCF (A,B) is as follows:If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.  Write A in quotient remainder form (A=BQ+R)

The Euclidean Algorithm for finding HCF (A,B) is as follows:If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.  Write A in quotient remainder form (A=BQ+R)Find HCF (B,R) using the Euclidean Algorithm since 

The Euclidean Algorithm for finding HCF (A,B) is as follows:If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.  Write A in quotient remainder form (A=BQ+R)Find HCF (B,R) using the Euclidean Algorithm since HCF (A,B)=HCF(B,R)

The Euclidean Algorithm for finding HCF (A,B) is as follows:If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.  Write A in quotient remainder form (A=BQ+R)Find HCF (B,R) using the Euclidean Algorithm since HCF (A,B)=HCF(B,R)Here, HCF of 441 and 567 can be found as follows:-

The Euclidean Algorithm for finding HCF (A,B) is as follows:If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.  If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.  Write A in quotient remainder form (A=BQ+R)Find HCF (B,R) using the Euclidean Algorithm since HCF (A,B)=HCF(B,R)Here, HCF of 441 and 567 can be found as follows:-567=441×1+126

⇒ 441=126×3+63

⇒ 441=126×3+63⇒ 126=63×2+0

⇒ 441=126×3+63⇒ 126=63×2+0Since remainder is 0, therefore, 

⇒ 441=126×3+63⇒ 126=63×2+0Since remainder is 0, therefore, H.C.F of (441,567) is =63

⇒ 441=126×3+63⇒ 126=63×2+0Since remainder is 0, therefore, H.C.F of (441,567) is =63Now H.C.F of 63 and 693 is

⇒ 441=126×3+63⇒ 126=63×2+0Since remainder is 0, therefore, H.C.F of (441,567) is =63Now H.C.F of 63 and 693 is693=63×11+0

⇒ 441=126×3+63⇒ 126=63×2+0Since remainder is 0, therefore, H.C.F of (441,567) is =63Now H.C.F of 63 and 693 is693=63×11+0Therefore, H.C.F of (63,693)=63

⇒ 441=126×3+63⇒ 126=63×2+0Since remainder is 0, therefore, H.C.F of (441,567) is =63Now H.C.F of 63 and 693 is693=63×11+0Therefore, H.C.F of (63,693)=63Thus, H.C.F of (441,567,693)=63.   

Answered by Tanishq2806
1

Answer: 63

mark as brainliest

Attachments:
Similar questions