Math, asked by nabaraj48, 1 month ago

Using Euclid’s Division Lemma, show that square of any positive integer is either of the form

4q, 4q+1 for some integer q.​

Answers

Answered by subhashbth8083
0

Answer:

I hope you understand

Thank you

Attachments:
Answered by TheBrainlistUser
1

By Euclid's division algorithm, a = bq + r

Where a,b,q,r are non negative integer and 0 ≤ r < b.

On putting b = 4

We get,

 \sf\implies{a = 4q +  r  \:  \:  \: ....(i)}

When r = 0, a = 4q

Squaring both sides

We get,

 \sf\implies{a {}^{2}  = (4q) {}^{2} }  \:  \:  \\  \sf\implies{a {}^{2}  = 4(4q) {}^{2} }

= 4m is perfect square for m

= 4q²

When r = 1, a = 4q + 1

Squaring both sides

We get,

 \sf\implies{a {}^{2} = (4q + 1) {}^{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf\implies{ = (4q) {}^{2}  + (1) {}^{2}  + 2(4q)}  \\  \sf\implies{ = 4(4q {}^{2} + 2q) + 1 } \:  \:  \:  \:  \:  \:  \:  \:

= 4m + 1 is perfect square for m = 4q² + 2q

When r = 2, a = 4q + 2

Squaring both sides

We get,

 \sf\implies{a {}^{2} = (4q + 2) {}^{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf\implies{a {}^{2} = (4q) {}^{2} + (2) {}^{2}  + 2(4q)(2)  } \\  \sf\implies{a {}^{2} = 4(4q {}^{2} + 4q + 1)  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:

= 4m is perfect square for m = 4q² + 4q + 1

When r = 3, a = 4q + 3

Squaring both sides

We get,

 \sf\implies{a {}^{2} = (4q + 3) {}^{2}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf\implies{  (4q) {}^{2} + (3) {}^{2} + 2(4q)(3)  } \\  \sf\implies{16q {}^{2} + 9 + 24q } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf\implies{16q {}^{2} + 24q  + 8 + 1} \:  \:  \:  \:  \:  \:  \:  \\  \sf\implies{4(4q {}^{2}6q + 2) + 1 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

= 4m + 1 is perfect square for some of value of m.

Hence, the square on any integer is either of the form 4q or 4q + 1 for some integer q.

\huge\sf\underline\pink{Hence \:  Proved  \: ! }

Similar questions