Using Euclid's division lemma, show that the cube of any positive integers is of the form 9m,9m+1,9m+8 for some integer m
Answers
Answered by
1
Answer:
PLEASE MARK IT AS BRAINLIEST
Step-by-step explanation:
Let 'a' be any positive integer and b=9
then by using eucild's division lemma
a=9q+r where,
q≥0 & 0≤r≤9
∴a=9q (or) 9q+1 (or) 9q+2 (or) 9q+3 (or) 9q+4 (or) 9q+5 (or) 9q+6 (or) 9q+7 (or) 9q=8
let 'a'=3n
C.O.B.S
a³=(3n)³
a³=27n³
a³=9(3n³) [∵3n³=m]
a³= 9m
a=3n+1
C.O.B.S
a³=(3n+1)³
a³=27n³+27n²+9n+1
a³=9(3n³+3n²+n)+1
a³=9m+1
a=3n+2
C.O.B.S
a³=(3n+2)³
a³=27n³+54n²+36n+8
a³=9(3n³+6n²+4n)+8
∴Cube of any number can be written in the form of 9m(or)9m+1(or)9m+8
PLEASE MARK IT AS BRAINLIEST IF IT IS HELPFUL TO YOU
Similar questions