Math, asked by jagpreetkaur6990, 1 year ago

Using euclid's division lemma show that the cube of any positive integer is of the form 9n,9n+1,9n+8

Answers

Answered by chakrichakradar2004
4

Answer:


Step-by-step explanation:

Let a be any positive integer and b = 3

a = 3q + r, where q ≥ 0 and 0 ≤ r < 3

 

Therefore, every number can be represented as these three forms. There are three cases.


Case 1: When a = 3q, 

 

Where m is an integer such that m =  (3q)3 = 27q3

9(3q3) = 9m


Case 2: When a = 3q + 1,

a 3 = (3q +1) 3 

a 3 = 27q 3 + 27q 2 + 9q + 1 

a 3 = 9(3q 3 + 3q 2 + q) + 1

a 3 = 9m + 1 

Where m is an integer such that m = (3q 3 + 3q 2+ q) 


Case 3: When a = 3q + 2,

a 3 = (3q +2) 3 

a 3 = 27q 3 + 54q 2 + 36q + 8 

a 3 = 9(3q 3 + 6q 2 + 4q) + 8

a 3 = 9m + 8


Where m is an integer such that m = (3q 3 + 6q 2+ 4q) 

Therefore, the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8.


Hope this helps!!

cheers!! (:



Read more on Brainly.in - https://brainly.in/question/3096538#readmore


bsf27: thanks
Similar questions