Math, asked by nehjamangkhongsaikho, 9 months ago

using euclids algorithm find the HCF of 1240 and 1984​

Answers

Answered by harshdhamaka2008
7

Answer:

IF YOU EVEN KNOW THE BASICS OF THIS METHOD UWILL DEFINATELY UNDERSTAND THIS PROBLEM'S SOLUTION

Step-by-step explanation:

1240 and 1984​

1984 = 1240 * 1 + 744

1240 = 744 * 1 + 496

744 = 496 * 1 + 248

496 = 248 * 2 + 0

Answered by gayatrikumari99sl
0

Answer:

248 is the HCF or 1240 and 1984.

Step-by-step explanation:

Explanation:

Given that, 1240 and 1984

  • HCF - In mathematics, the largest positive integer that divides each of the integers is known as the greatest common divisor of two or more integers that are not all equal to zero.
  • By applying Euclid's division lemma, the Euclid's division algorithm can be used to determine the HCF of two numbers.
  • It says there must be q and r such that they satisfy the given condition a = bq + r.

Step1:

                1240)1984(1

                        - 1240

                            744)1240(1

                                     - 744

                                        496)744(1

                                                -496

                                                    248)496(2

                                                            -496

                                                               xxx

Now, by Euclid algorithm

1984 = 1240 × 1 + 744

⇒ 1240 = 744 × 1 + 496

⇒ 744 = 496× 1 +  248

⇒ 496 = 248 × 2 + 0

Here we can see that on dividing 496 by 248 we get 0 as remainder.

Therefore, 248 is the HCF or 1240 and 1984.

Final answer:

Hence,  248 is the HCF or 1240 and 1984.

Similar questions