using factor theorem factorise the following (a) x³-3x²-9x-5
Answers
Answered by
18
➡ x³ - 3x² -9x - 5
= x³ + x² - 4x² - 4x - 5x - 5
= x²(x + 1) - 4x(x + 1) - 5(x - 1)
= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】
= (x + 1)(x² - 5x + x - 5)
= (x + 1)(x + 5)(x + 1)
= (x + 1)(x + 5)
Therefore,(x + 1) & (x + 5) are the factors of the above mentioned polynomial.
___________
___________
✪ Be Brainly ✪
kajalsinghal:
thank you friend
Answered by
1
Answer:
Answer: x³ - 3x² -9x - 5
Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5
Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)
Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】
Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)
Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)= (x + 1)(x + 5)(x + 1)
Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)= (x + 1)(x + 5)(x + 1)= (x + 1)(x + 5)
Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)= (x + 1)(x + 5)(x + 1)= (x + 1)(x + 5)Therefore,(x + 1) & (x + 5) are the factors of the above mentioned polynomial.
Similar questions