Math, asked by kajalsinghal, 1 year ago

using factor theorem factorise the following (a) x³-3x²-9x-5

Answers

Answered by Anonymous
18
\textbf{Answer:}

➡ x³ - 3x² -9x - 5

= x³ + x² - 4x² - 4x - 5x - 5

= x²(x + 1) - 4x(x + 1) - 5(x - 1)

= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】

= (x + 1)(x² - 5x + x - 5)

= (x + 1)(x + 5)(x + 1)

= (x + 1)(x + 5)

Therefore,(x + 1) & (x + 5) are the factors of the above mentioned polynomial.
___________

\boxed{Hope\:it\:helps\:you!}
___________
✪ Be Brainly ✪

kajalsinghal: thank you friend
Anonymous: :)) is it correct?
Answered by khuranajahnvi770
1

Answer:

Answer: x³ - 3x² -9x - 5

Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5

Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)

Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】

Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)

Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)= (x + 1)(x + 5)(x + 1)

Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)= (x + 1)(x + 5)(x + 1)= (x + 1)(x + 5)

Answer: x³ - 3x² -9x - 5= x³ + x² - 4x² - 4x - 5x - 5= x²(x + 1) - 4x(x + 1) - 5(x - 1)= (x + 1)(x² - 4x - 5) ----【Taking (x + 1) common】= (x + 1)(x² - 5x + x - 5)= (x + 1)(x + 5)(x + 1)= (x + 1)(x + 5)Therefore,(x + 1) & (x + 5) are the factors of the above mentioned polynomial.

Similar questions