Using factor theorem, factorize each of the following polynomials: (i) x3 – 6x2 + 3x + 10 (ii) 2y3 – 5y2 – 19y + 42
Answers
Find more:
Using factor theorem, factorize each of the following polynomial:
x³-10x²-53x-42
https://brainly.in/question/15904661
Factorise y2-5y+6 by using the factor theorem
https://brainly.in/question/3493349
Answer:
GIVEN :
Using factor theorem, factorize each of the following given polynomials :
(i) x^3 - 6x^2 + 3x + 10x
3
−6x
2
+3x+10
(ii) 2y^3 - 5y^2 -19y + 422y
3
−5y
2
−19y+42
TO FIND :
The factors the given polynomials.
SOLUTION :
Given that the polynomials (i) x^3 - 6x^2 + 3x + 10x
3
−6x
2
+3x+10
(ii) 2y^3 - 5y^2 -19y + 422y
3
−5y
2
−19y+42
Now factorise the given polynomials by using Factor theorem.
Factor theorem states that :
A polynomial f(x) has a factor in the form of (x-a) if and only if the value of f(a)=0.
(i) x^3 - 6x^2 + 3x + 10x
3
−6x
2
+3x+10
Let f(x) be the given polynomial.
f(x)=x^3 - 6x^2 + 3x + 10f(x)=x
3
−6x
2
+3x+10
Put x=-1 in the above polynomial we get,
f(-1)=(-1)^3-6(-1)^2+3(-1)+10f(−1)=(−1)
3
−6(−1)
2
+3(−1)+10
=-1-6-3+10=−1−6−3+10
=0=0
∴ f(-1)=0 and -1 is a zero.
∴ x+1 is a factor of the given polynomial.
By using Synthetic division we can find the factors.
-1_| 1 -6 3 10
0 -1 7 -10
_________________
1 -7 10 0
x^2-7x+10=0x
2
−7x+10=0
x^2-5x-2x+10=0x
2
−5x−2x+10=0
x(x-5)-2(x-5)=0x(x−5)−2(x−5)=0
(x-5)(x-2)=0(x−5)(x−2)=0
x-5=0 or x-2=0
∴ x=5 , 2 are the zeroes.
∴ x^3 - 6x^2 + 3x + 10=(x+1)(x-5)(x-2)x
3
−6x
2
+3x+10=(x+1)(x−5)(x−2)
∴ the factors of the given polynomial x^3 - 6x^2 + 3x + 10x
3
−6x
2
+3x+10 are (x+1),(x-5) and (x-2)
(ii) 2y^3 - 5y^2 -19y + 422y
3
−5y
2
−19y+42
Let f(y) be the given polynomial.
f(y)=2y^3 - 5y^2 -19y + 42f(y)=2y
3
−5y
2
−19y+42
Put y=-3 in the above polynomial we get,
f(-3)=2(-3)^3-5(-3)^2-19(-3)+42f(−3)=2(−3)
3
−5(−3)
2
−19(−3)+42
=-54-45+57+42=−54−45+57+42
By adding the like terms,
=0=0
∴ f(-3)=0 and -3 is a zero.
∴ x+3 is a factor of the given polynomial.
By using Synthetic division we can find the factors.
-3_| 2 -5 -19 42
0 -6 33 -42
_________________
2 -11 14 0
2x^2-11x+14=02x
2
−11x+14=0
Now solve the quadratic equation by using the formula,
For a quadratic equation ax^2+bx+c=0ax
2
+bx+c=0
x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}x=
2a
−b±
b
2
−4ac
Here a=2 , b=-11 and c=14
Substitute the values in the formula we get
x=\frac{-(-11)\pm \sqrt{(-11)^2-4(2)(14)}}{2(2)}x=
2(2)
−(−11)±
(−11)
2
−4(2)(14)
=\frac{11\pm \sqrt{121-112}}{4}=
4
11±
121−112
=\frac{11\pm \sqrt{9}}{4}=
4
11±
9
=\frac{11\pm 3}{4}=
4
11±3
∴ x=\frac{11+3}{4}x=
4
11+3
and x=\frac{11-3}{4}x=
4
11−3
x=\frac{14}{4}x=
4
14
and x=\frac{8}{4}x=
4
8
x=\frac{14}{4}x=
4
14
and x=\frac{8}{4}x=
4
8
∴ x=\frac{7}{2}x=
2
7
and x=2 are the zeroes.
∴ x-\frac{7}{2}x−
2
7
and x-2 are the factors.
∴ 2y^3 - 5y^2 -19y + 42=(x+3)(x-\frac{7}{2})(x-2)2y
3
−5y
2
−19y+42=(x+3)(x−
2
7
)(x−2)
∴ the factors of the given polynomial 2y^3 - 5y^2 -19y + 422y
3
−5y
2
−19y+42 are (x+3),(x-\frac{7}{2}
2
7
) and (x-2).
Step-by-step explanation:
hope this will help you