Math, asked by dark198431, 2 months ago


Using factor theorem show that x - 2 is a factor of x3 + x2 - 4x - 4. Hence factorise the
polynomial
fadh

Answers

Answered by Anonymous
11

\huge{\underline{\underline{\sf{\red{Given\::}}}}}

  • \bf{x}^{3}\:{+\:x}^{2}\:{-\:4x}\:{-\:4}

{ }

\huge{\underline{\underline{\sf{\red{Show\::}}}}}

  • \bf{Factor\:Theorem}

{ }

\huge{\underline{\underline{\sf{\red{Solution\::}}}}}

  • \sf{Let\:f(x)\:=\:x}^{3}\:+\:{x}^{2}\:{-\:4x\:-\:4}
  • \sf{Putting,\:x\:=\:2\:;\:We\:get\:-}

{ }

\:\:\:\:\:\:\::\:\Longrightarrow\sf\small\:{f(2)\:=\:(2)}^{3}\:{+\:(2)}^{2}\:{-\:4\:\times\:2\:-\:4}

\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{8\:+\:4\:-\:8\:-\:4}

\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{12\:-\:12}

\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{0}

\therefore\:\sf{\small{\footnotesize{By\:factor\:theorem\:,\:(x\:-\:2)\:is\:a\:factor\:of\:f(x)}}}

{ }

  • {\underline{\sf{\small{Hence,\:{\bold{(x\:-\:2)}}\:are\:factors\:of\:{\bold{x}}^{3}\:{\bold{+\:x}}^{2}\:{\bold{-\:4x\:-\:4}}}}}}
Similar questions