using factor theorem show that (x-3) is a factor of x3- 7x2+15x-9 and factorise the given expression
completely
Answers
If p(x) is a polynomial of degree n ≥ 1 and "a" is any real number, then
- (x-a) is a factor of p(x) , if p(a) = 0
- and it's converse " If (x-a) is a factor of a polynomial p(x) then p(a) = 0.
**********************
x-3) x³-7x²+15x-9( x²-4x+3
***** x³-3x²
______________
********* -4x²+15x
********* -4x²+12x
_______________
*************** 3x -9
*************** 3x - 9
_________________
***Remainder (0 )
Therefore.,
•••♪
Answer:
p(x) is a polynomial of degree n ≥ 1 and "a" is any real number, then
(x-a) is a factor of p(x) , if p(a) = 0
and it's converse " If (x-a) is a factor of a polynomial p(x) then p(a) = 0.
**********************
Let \: p(x) = x^{3} - 7x^{2} + 15x - 9Letp(x)=x3−7x2+15x−9
g(x) = x - 3 ,g(x)=x−3,
The \:zero \: of \:g(x) = 3Thezeroofg(x)=3
\begin{gathered} Then \: p(3) = 3^{3} - 7\times 3^{2} + 15\times 3 - 9 \\= 27 - 63 + 45 - 9 \\= 72 - 72 \\= 0 \end{gathered}Thenp(3)=33−7×32+15×3−9=27−63+45−9=72−72=0
\begin{gathered} So, By \: Factor \: theorem , (x-3) \: is \:a \\factor \: of \:p(x) \end{gathered}So,ByFactortheorem,(x−3)isafactorofp(x)
x-3) x³-7x²+15x-9( x²-4x+3
***** x³-3x²
______________
********* -4x²+15x
********* -4x²+12x
_______________
*************** 3x -9
*************** 3x - 9
_________________
***Remainder (0 )
\begin{gathered} p(x) = (x-3)(x^{2}-4x+3) \\= (x-3)(x^{2} - 1x - 3x + 3)\\= (x-3)[ x(x-1)-3(x-1)] \\= (x-3)(x-1)(x-3) \end{gathered}p(x)=(x−3)(x2−4x+3)=(x−3)(x2−1x−3x+3)=(x−3)[x(x−1)−3(x−1)]=(x−3)(x−1)(x−3)
Therefore.,
\begin{gathered} \red {x^{3} - 7x^{2} + 15x - 9}\\\green {= (x-3)(x-1)(x-3)} \end{gathered}x3−7x2+15x−9=(x−3)(x−1)(x−3)
•••
HOPE IT WILL HELP..
PLEASE MARK ME AS THE BRAINLIEST.....