using factor theorem show that (x-y) is a factor of x(y² -z² ) +y(z²-x² )+ z(x²-y²)
Answers
Answered by
12
Let x-y is a factor
Then x = y
> x(y² -z² ) +y(z²-x² )+ z(x²-y²)
= x(x²-z²) + x(z²-x²) + z(x²-x²)
= x³ - xz² + xz² - x³ + z(0)
= 0 + 0
= 0
The remainder is zero.
So, x-y is a factor of x(y² -z² ) +y(z²-x²) + z(x²-y²)
Hence proved
Then x = y
> x(y² -z² ) +y(z²-x² )+ z(x²-y²)
= x(x²-z²) + x(z²-x²) + z(x²-x²)
= x³ - xz² + xz² - x³ + z(0)
= 0 + 0
= 0
The remainder is zero.
So, x-y is a factor of x(y² -z² ) +y(z²-x²) + z(x²-y²)
Hence proved
venkatarambabup1k2lk:
snehitha your super
Answered by
2
Hi ,
Let p( x ) = x(y²-z²)+y(z²-x²)+z(x²-y²)
***************************"***************
If p( y ) = 0 then ( x - y ) is a factor of p( x ) .
**********************************"***********
p( y ) = y(y² - z² ) + y ( z² - y² ) + z ( y² - y² )
= y³ - yz² + yz² - y
= 0
Therefore ,
( x - y ) is a factor of p ( x ) .
I hope this helps you.
:)
Let p( x ) = x(y²-z²)+y(z²-x²)+z(x²-y²)
***************************"***************
If p( y ) = 0 then ( x - y ) is a factor of p( x ) .
**********************************"***********
p( y ) = y(y² - z² ) + y ( z² - y² ) + z ( y² - y² )
= y³ - yz² + yz² - y
= 0
Therefore ,
( x - y ) is a factor of p ( x ) .
I hope this helps you.
:)
Similar questions