Math, asked by haseenamujawar2007, 11 months ago

Using formula sinA=√1-cos2A/2 find the value of sin30 given that cos60=1/2​

Attachments:

Answers

Answered by Anonymous
1

Step-by-step explanation:

please mark me brainlist ✔️

Attachments:
Answered by BrainlyPopularman
7

GIVEN :

Value of cos(60°) = ½ .

TO FIND :

Value of sin(30°) = ?

SOLUTION :

Formula to use –

 \\ \longrightarrow { \bold{ \sin(A) =  \sqrt{ \dfrac{1 -  \cos(2A) }{2} } }} \\

• Let's put A = 30°

 \\ \implies { \bold{ \sin( {30}^{ \circ} ) =  \sqrt{ \dfrac{1 -  \cos(2 \times  {30}^{ \circ} ) }{2} } }} \\

 \\ \implies { \bold{ \sin( {30}^{ \circ} ) =  \sqrt{ \dfrac{1 -  \cos({60}^{ \circ} ) }{2} } }} \\

• Put the given value –

 \\ \implies { \bold{ \sin( {30}^{ \circ} ) =  \sqrt{ \dfrac{1 -  \dfrac{1}{2}  }{2} } }} \\

 \\ \implies { \bold{ \sin( {30}^{ \circ} ) =  \sqrt{ \dfrac{  \left( \dfrac{1}{2} \right)  }{2} } }} \\

 \\ \implies { \bold{ \sin( {30}^{ \circ} ) =  \sqrt{ \dfrac{1}{4}}}} \\

 \\ \implies \large { \boxed{{ \bold{ \sin( {30}^{ \circ} ) =  \dfrac{1}{2} }}}} \\

 \\ \rule{220}{2} \\

Similar questions