Using formula Sum of first n natural number is n(n +1)/2 Substitute 10 terms Substitute 20 terms Substitute 25 terms Substitute 40 terms
Answers
The Sum Formula
The sum of n terms of AP is the sum(addition) of first n terms of the arithmetic sequence. It is equal to n divided by 2 times the sum of twice the first term – ‘a’ and the product of the difference between second and first term-‘d’ also know as common difference, and (n-1), where n is numbers of terms to be added.
Sum of n terms of AP = n/2[2a + (n – 1)d]
For example:
1, 4, 9, 16, 25, 36, 49 ……….625 represents a sequence of squares of natural numbers till 25.
3, 7, 11, 15, 19,………..87 forms another sequence, where each of the terms exceeds the preceding term by 4.
If all the terms of a progression except the first one exceeds the preceding term by a fixed number, then the progression is called arithmetic progression. If a is the first term of a finite AP and d is a common difference, then AP is written as – a, a+d, a+2d, ………, a+(n-1)d.
Note: Before learning how to derive a formula to get the sum of n terms in an AP, try this activity:
Try to get the sum of the first 100 natural numbers without using any formula.
This question was posed in the same way to one of the great mathematicians, Carl Gauss (1777-1855). He is often referred to be ‘Princeps mathematicorum’ (Latin), meaning ‘the foremost of mathematicians’. At that time, his age was 10 yrs. He came up with the answer to the above problem in a matter of seconds.
The proof for the question can be done using the following way:
The sum of the number can be represented as
Sum = 1+2+3+4+……………+ 97 + 98 + 99 + 100——————————————– (1)
Even if the order of the numbers is reversed, their sum remains the same.
Sum = 100 + 99 + 98 + 97 + ………..+ 4 + 3 + 2 + 1—————————————– (2)
Adding equations 1 and 2, we get
2 × Sum = (100+ 1) + (99+2) + (98+3 )+ (97 +4)+ ………..(4+97)+(3+98)+(2+99)+(1+100)
2 × Sum = 101 + 101 + 101 + 101 + ………..(4+97)+(3+98)+(2+99)+(1+100)
2 ×Sum = 101 (1 + 1 + 1 + …..100 terms)
2 × Sum = 101 (100)
Sum = {101 × 100}/{2}
Sum = 5050
Using the above method, sum of numbers like 1000, 10000, etc. can also be calculated.
Sum of Natural Numbers
Numbers Sum
1-10 55
1-100 5050
1-1000 500500
1-10000 50005000
1-100000 5000050000
1-1000000 500000500000
The interesting thing is that the above method is applicable to any AP (if the last term of the AP is known). Consider the general form of AP with first term as a, common difference as d and last term i.e. the nth term as l. The sum of n terms of AP will hence be
Sum = a + (a+d) + (a+2d) …… + (l-2d) + (l-d) + l——————– (3)
where l= a+(n-1)d
Writing in reverse order, the sum will still remain same.
Sum =l+(l-d)+(l-2d)..…+(a+2d)+(a+d)+a——————- (4)
Adding equations 3 and 4, we get
2 × Sum =(a+l)+[(a+d)+(l-d)]………+[(l-d)+(a+d)]+(l+a)]
2× Sum =(a+l)+(a+l)………+(a+l)+(a+l)
2 × Sum = n×(a+l)
⇒ Sum = n/2(a+l)
Substituting the value of l in the previous equation, we get
Sum of n terms of AP = n/2[2a + (n – 1)d]
For AP of natural numbers, a = 1 and d = 1, Sum of n terms (Sn) of this AP can be found using the formula-
Sn = n/2[2×1+(n-1)1]
Sn = n(n+1)/2
Some examples will enhance the understanding of the topic.
Example 1: If the first term of an AP is 67 and the common difference is -13, find the sum of the first 20 terms.
Solution: Here, a = 67 and d= -13
Sn = n/2[2a+(n-1)d]
S20 =20/2[2×67+(20-1)(-13)]
S20= 10[134 – 247]
S20 = -1130
So, the sum of first 20 terms is -1130.
Example 2: The sum of n and (n − 1) terms of an AP is 441 and 356 respectively. If the first term of the AP is 13 and the common difference is equal to the number of terms, find the common difference of the AP.
Solution: The sum of n terms Sn = 441
Similarly, Sn-1= 356
a = 13
d= n
For an AP, Sn = (n/2)[2a+(n-1)d]
Putting n = n-1 in above equation,
l is the last term. It is also denoted by an. The result obtained is
Sn -Sn-1 = an
So, 441-356 = an
an = 85 = 13+(n-1)d
Since d=n,
n(n-1) = 72
⇒n2 – n – 72= 0
Solving by factorization method,
n2-9n+8n-72 = 0
(n-9)(n+8)=0
So, n= 9 or -8
Since number of terms can’t be negative,
n= d = 9
Answer:
Sum of n terms of AP = n/2[2a + (n – 1)d]
Step-by-step explanation: