Using gauss elimination method, solve x1 + 2 x2 = 3, 2 x1 + 4 x2 = 7
Answers
Answer:
matrix can serve as a device for representing and solving a system of equations. To express a system in matrix form, we extract the coefficients of the variables and the constants, and these become the entries of the matrix. We use a vertical line to separate the coefficient entries from the constants, essentially replacing the equal signs. When a system is written in this form, we call it an augmented matrix.
For example, consider the following 2 × 2system of equations.
3x + 4y = 7
4x − 2y = 5
We can write this system as an augmented matrix (please note that a more common formatting for augmented matrices has a solid vertical line running through the matrix, rather than a line on each row):
[34|74−2|5]" role="presentation" style="font-family: proxima-nova, sans-serif; -webkit-font-smoothing: subpixel-antialiased; padding: 1px 0px; margin: 0px; font-size: 17.44px; vertical-align: baseline; background: transparent; border: 0px; outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">[34|74−2|5][34|74−2|5]
We can also write a matrix containing just the coefficients. This is called the
coefficient matrix.
[344−2]" role="presentation" style="font-family: proxima-nova, sans-serif; -webkit-font-smoothing: subpixel-antialiased; padding: 1px 0px; margin: 0px; font-size: 17.44px; vertical-align: baseline; background: transparent; border: 0px; outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">[344−2][344−2]
A three-by-three system of equations such as
3x − y − z = 0
x + y = 5
2x − 3z = 2
has a coefficient matrix
[3−1−111020−3]" role="presentation" style="font-family: proxima-nova, sans-serif; -webkit-font-smoothing: subpixel-antialiased; padding: 1px 0px; margin: 0px; font-size: 17.44px; vertical-align: baseline; background: transparent; border: 0px; outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">⎡⎢⎣3−1−111020−3⎤⎥⎦[3−1−111020−3]
and is represented by the augmented matrix
[3−1−1∣0110∣520−3∣2]" role="presentation" style="font-family: proxima-nova, sans-serif; -webkit-font-smoothing: subpixel-antialiased; padding: 1px 0px; margin: 0px; font-size: 17.44px; vertical-align: baseline; background: transparent; border: 0px; outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">⎡⎢⎣3−1−1∣0110∣5