using graph find zeroes
y=x²3x-4
Answers
EXPLANATION.
There is two possibility in this question.
(1) = y = x² + 3x - 4.
(2) = y = x² - 3x - 4.
(1) = y = x² + 3x - 4.
From the first equation, we get.
Factorizes into middle term split, we get.
⇒ y = x² + 4x - x - 4.
⇒ y = x(x + 4) - 1( x + 4).
⇒ y = (x - 1)(x + 4).
⇒ (x - 1)(x + 4) = 0.
⇒ x = 1,x = -4.
Put the value of x = 1 in equation, we get.
⇒ y = (1)² + 3(1) - 4.
⇒ y = 1 + 3 - 4.
⇒ y = 4 - 4.
⇒ y = 0.
Their Co-ordinates = (1,0).
Put x = -4 in equation, we get.
⇒ y = (-4)² + 3(-4) - 4.
⇒ y = 16 - 12 - 4.
⇒ y = 16 - 16.
⇒ y = 0.
Their Co-ordinates = (-4,0).
Put x = 0 in equation, we get.
⇒ y = (0)² + 3(0) - 4.
⇒ y = 0 + 0 - 4.
⇒ y = -4.
Their Co-ordinates = (0,-4).
(2) = y = x² - 3x - 4.
From second equation, we get.
Factorizes into middle term split, we get.
⇒ y = x² - 4x + x - 4.
⇒ y = x(x - 4) + 1(x - 4).
⇒ y = (x + 1)(x - 4).
⇒ (x + 1)(x - 4) = 0.
⇒ x = -1,4.
Put the value of x = -1 in equation, we get.
⇒ y = (-1)² - 3(-1) - 4.
⇒ y = 1 + 3 - 4.
⇒ y = 4 - 4.
⇒ y = 0.
Their Co-ordinates = (-1,0).
Put x = 4 in equation, we get.
⇒ y = (4)² - 3(4) - 4.
⇒ y = 16 - 12 - 4.
⇒ y = 16 - 16.
⇒ y = 0.
Their Co-ordinates = (4,0).
Put x = 0 in equation, we get.
⇒ y = (0)² - 3(0) - 4.
⇒ y = -4.
Their Co-ordinates = (0,-4).
Both the curves form upwards parabola.
(1) = Red curves indicates the equation,
⇒ y = x² + 3x - 4.
(2) = Blue curves indicates the equation,
⇒ y = x² - 3x - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- using graph find zeroes y=x²3x-4 ?
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
☯ (1) = y = x² + 3x - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
~ From the first equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
~Factorizes into middle term split,
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = x² + 4x - x - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = x(x + 4) - 1( x + 4).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (x - 1)(x + 4).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ (x - 1)(x + 4) = 0.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ x = 1,x = -4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put the value of x = 1 in equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (1)² + 3(1) - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 1 + 3 - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 4 - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 0.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
☢ Their Co-ordinates = (1,0)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put x = -4 in equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (-4)² + 3(-4) - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 16 - 12 - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 16 - 16.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 0.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Their Co-ordinates = (-4,0).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put x = 0 in equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (0)² + 3(0) - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 0 + 0 - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = -4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Their Co-ordinates = (0,-4).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
(2) = y = x² - 3x - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
~From second equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
~Factorizes into middle term split,
we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = x² - 4x + x - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = x(x - 4) + 1(x - 4).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (x + 1)(x - 4).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ (x + 1)(x - 4) = 0.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ x = -1,4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put the value of x = -1 in equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (-1)² - 3(-1) - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 1 + 3 - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 4 - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 0.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Their Co-ordinates = (-1,0).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put x = 4 in equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (4)² - 3(4) - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 16 - 12 - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 16 - 16.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = 0.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Their Co-ordinates = (4,0).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put x = 0 in equation, we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = (0)² - 3(0) - 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ y = -4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
☯ Their Co-ordinates = (0,-4).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀