Math, asked by ashwinpolisetti, 11 months ago

using green's theorem to find area of the region in the first quadrant bounded by the curves y = x y = 1/x and y = x/4

anyone, pls help me with this question??

Answers

Answered by knjroopa
7

Step-by-step explanation:

Given using green's theorem to find area of the region in the first quadrant bounded by the curves y = x y = 1/x and y = x/4

  • Applying Green’s theorem we have,
  • Area = 1/2 P ∫ (x dy – y dx)
  •           = 1/2 (P1 ∫ + P2 ∫ + P3 ∫)
  •            = 1/2 [P1 ∫ (x dy – y dx) + P2∫ (x dy – y dx) + P3 ∫(x dy – y dx)]
  •      So P1 is y = x/4, P2 is y = 1/x and P 3 is y = x
  • Therefore P1 ∫(x dy – y dx)
  •                  = 0 to 2 ∫ (x/4 – x/4) dx = 0
  •  Also    ∫ P2 (x dy – y dx)
  •                                     = 1 ∫- 1/x dx – 1/x dx
  •                                      = - 2  1 ∫1/x dx
  •                                    = 2 log 2  
  •  Similarly ∫ P3 x dy – y dx  
  •                                        = 1 to 0 ∫(x dx – x dx )
  •                                         = 0
  • Therefore P ∫ (x dy – y dx)
  •                                           = 1/2 (0 + 2 log 2 + 0)
  •                                           = log 2

Reference link will be

https://brainly.in/question/19187598

https://brainly.in/question/5952668

Similar questions