Using he identity (a-b)2 = (a2-2ab+b2)
Evaluate:
(192)2
step by step explanation
no spam
Answers
Answer:
(192)² is 36864.
Step-by-step explanation:
We have,
• (192)²
We can also write this as :
• (200 - 8)²
We have to use the identity : (a - b)² = a² - 2ab + b²
Here,
a is 200 and b is 8.
Put a and b in Identity :
→ (200 - 8)²
→ (200)² - 2 × 200 × 8 + (8)²
→ 40000 - 3200 + 64
→ 36800 + 64
→ 36864
Thus,
(192)² is 36864 .
Know some more algebraic identities :
- (a + b)² = a² + 2ab + b².
- a² - b² = (a + b) (a - b).
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca.
- (a - b - c)² = a² + b² + c² - 2ab + 2bc - 2ca.
- (a + b)³ = a³ + b³ + 3ab(a + b).
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ - b³ = (a - b)(a² + b² + ab)
- a³ + b³ = (a + b)(a² + b² - ab)
Answer:
36,864
Step-by-step explanation:
Appropriate Question :
Using the identity (a - b)² = (a² - 2ab + b²)
Evaluate : (192)²
Solution :
Using the identity :
⇒ (a - b)² = (a² - 2ab + b²)
192² can be written as : (200 - 8)²
⇒ (200 - 8)²
Using the identity,
⇒ (200)² - 2(200)(8) + (8)²
⇒ (200 × 200) - (2 × 200 × 8) + (8 × 8)
⇒ 40000 - 3200 + 64
⇒ 40000 - 3136
⇒ 36, 864
⊕ Hence, (192)² = 36, 864
More to Know :
More algebric identities :
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
Note :
The above question can also be solved using (a + b)² = a² + 2ab + b² identity as well. It's shown below :
It can be written as :
⇒ (190 + 2)²
⇒ (190)² + 2(190)(2) + (2)²
⇒ 36,100 + 760 + 4
⇒ 36,864