Math, asked by Danish00786, 9 months ago

using heroine formula find the area of an equilateral triangle of side a unit ​

Answers

Answered by Brâiñlynêha
6

\huge\mathbb{SOLUTION:-}

\sf\underline{\underline{\:\:\:\:Given:-\:\:\:\:}}

  • Side of equilatera∆ = a

\sf\underline{\blue{\:\:\:\:To\: Find:-\:\:\:\:}}

The area of triangle

Now

\sf\underline{\pink{\:\:\:\: Solution:-\:\:\:\:}}

\boxed{\sf{Area\:of\: \triangle=\sqrt{s(s-a)(s-b)(s-c)}}}

  • a,b, and c are the sides of ∆

\sf \implies s=\dfrac{a+b+c}{2}\\ \\ \sf\:\:a,b,\:and\:c= a\\ \\ \sf\implies s=\dfrac{a+a+a}{2}\\ \\ \sf\implies s= \dfrac{3a}{2}

\sf \bullet (s-a)=\dfrac{3a}{2}-a\\ \\ \sf  (s-a)=\dfrac{3a-2a}{2}\\ \\ \sf \bullet (s-a)=\dfrac{a}{2}

  • side =a

\sf \bullet (s-b)=\dfrac{3a}{2}-a\\ \\ \sf  (s-b)=\dfrac{3a-2a}{2}\\ \\ \sf \bullet (s-b)=\dfrac{a}{2}

  • side =a

\sf \bullet (s-c)=\dfrac{3a}{2}-a\\ \\ \sf  (s-c)=\dfrac{3a-2a}{2}\\ \\ \sf \bullet (s-c)=\dfrac{a}{2}

Now the area

\sf\implies Area=\sqrt{s(s-a)(s-b)(s-c)}\\ \\ \sf\implies Area=\sqrt{\dfrac{3a}{2}\times \dfrac{a}{2}\times \dfrac{a}{2}\times \dfrac{a}{2}}\\ \\ \sf\implies Area=\sqrt{\dfrac{3a{}^{4}}{16}}\\ \\ \sf\implies Area=\dfrac{\sqrt{3}}{4}a{}^{2}

\boxed{\sf{Area\:of\: equilateral\triangle=\dfrac{\sqrt{3}}{4}a{}^{2}}}

Similar questions