Math, asked by swathivenkat2015, 11 months ago

using
Heron's
formula, Find the
area
of
a
triangle
whose sides are.1.8,8,8.2​

Answers

Answered by Anonymous
0

 =  \sqrt{9(9 - 8)(9 - 1.8)(9 - 8.2)}  \\  =  \sqrt{9 \times 1 \times 8.2 \times 1.8}  \\  = 3 \sqrt{7.2 \times 1.8}  \\  = 3 \sqrt{9 \times 0.8 + 9 \times 0.2}  \\  = 9 \sqrt{0.1}

= 43.46

hope it helps you.

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=7.2\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 1.8,8,8.2} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{1.8 + 8+ 8.2}{2}  \\  \\  : \implies s =  \frac{18}{2}  \\  \\  \green{ : \implies s = 9} \\  \\   \circ\:  \bold{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{9(9 - 1.8)(9- 8)(9 - 8.2)}  \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{9 \times 7.2 \times 1\times 0.8}   \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{51.84}   \\  \\ :  \implies \text{Area \: of \: triangle =}7.2 \: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 7.2 {cm}}^{2} }

Similar questions