Math, asked by JoshuaNicewin, 7 months ago

using heron's formula find the area of a triangle whose sides are 10cm 24cm 26cm​

Answers

Answered by vanshikatyagi59
11

Step-by-step explanation:

let a=10cm, b=24cm, c=26cm

s= 10+24+26

2

s = 60

2

s = 30

area of triangle = ✓s(s-a)(s-b)(s-c)

=✓30(30-10)(30-24)(30-26)

=✓30×20×6×4

=✓3×10×2×10×3×2×2×2

=3×10×2×2

=120cm^2

Answered by Anonymous
6

Answer:

 \:  \:  \:  \: herons \:  \: formula \\  \sqrt{s(s - a)(s - b)(s - c)} \\ a = 10cm \:  \:  \:  \: b = 24cm \:  \:  \:  \: c = 26cm \\ s = semiperimeter \:  \\ s =  \frac{a + b + c}{2}  \\s =  \frac{10 + 24 + 26}{2}   \\ s =  \frac{60}{2}  \\ s = 30cm \\ area =  \sqrt{s(s - a)s(s - b)s(s - c)}  \\  =  \sqrt{30(30 - 10)30(30 - 24)30(30 - 26)}  \\  =  \sqrt{30 \times 20 \times 30 \times 6 \times 30 \times 4}  \\   = \sqrt{30  \times 30 \times 30  \times 2 \times 2 \times 20 \times 6}  \\  = 30 \times 2 \sqrt{30 \times 20 \times 6}  \\  = 60 \sqrt{3 \times 2 \times 5 \times 2 \times 2 \times 5 \times 3 \times 2}  \\  = 60 \sqrt{3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5}  \\  = 60 \times 3 \times 2 \times 2 \times 5 \\  = 60 \times 60 \\  = 3600c {m}^{2}

I hope it will help you

Similar questions