Math, asked by sgurwinder1417, 1 year ago

Using heron's formula find the area of a triangle whose sides are 5cm 12cm and 13cm

Answers

Answered by REDRAGON
1
let sides of ∆ be
a = 5
b = 12
c = 13
s = (a+b+c)/2 = (5+12+13)/2 = 15

heron's formula
area = √(s(s-a)(s-b)(s-c))

= √(15(15-5)(15-12)(15-13))

= √(15*10*3*2). =√900 = 30

thus area of ∆ = 30 cm²
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=30\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 5 cm,12 cm,13 cm} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{5+ 12+ 13}{2}  \\  \\  : \implies s =  \frac{30}{2}  \\  \\  \green{ : \implies s = 15} \\  \\   \circ\:  \bold{Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{15(15- 5)(15-12)(15- 13)}  \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{15 \times 10\times 3\times 2}   \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{900}   \\  \\  :  \implies \text{Area \: of \: triangle =}30\: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle =30{cm}}^{2} }

Similar questions