Math, asked by apnaquddus, 9 months ago

Using Heron's formula, find the area of the triangle whose sides measure
10 cm, 24 cm and 26 cm.

Answers

Answered by mysticd
5

 Let \: a,b \:and\: c \:are \: sides \: measures \\of \: a \: triangle

 Given \: a = 10 \:cm, b = 24 \:cm \: and \\ c = 26 \:cm

 s = \frac{a+b+c}{2}

 \implies s = \frac{10+24+26}{2} \\= \frac{60}{2} \\= 30

 \boxed { \pink { Area \:of \: a \: triangle = \sqrt{s(s-a)(s-b)(s-c)} }}

 \triangle = \sqrt{ 30(30-10)(30-24)(30-26)} \\= \sqrt{30\times 20 \times 6 \times 4 } \\= \sqrt{10^{2} \times 2^{2} \times 6^{2} } \\= 10 \times 2 \times 6 \\= 120

Therefore.,

 \red { Area \:of \: the \: triangle} \green {=  120 \: cm^{2}}

•••♪

Answered by Misthi4275
2

Answer:

120

Step-by-step explanation:

a = 10, b = 24, c = 26

s = a + b + c / 2

s = 10 + 24 + 26/ 2

s= 30

A = √ 30 (30 - 10) (30- 24) (30- 26)

= √30*20*6*4

=√ 2*2*5*2*3*2*2*30

= 2*2 √ 5*2*3*30

= 4√ 30*30

= 4*30

= 120

Similar questions