Math, asked by vishal2004jayapak1jf, 11 months ago

using heron's formula find the area of triangle ABC in which AB equal to AC base 5 which is bc and the perimeter is 40 cm​

Answers

Answered by krishnatosharma
4

Answer:

43.30cm²

Step-by-step explanation:

Heron's formula=√s(s-a)(s-b)(s-c)           where s=perimeter of triangle/2

                                                                             s=(a+b+c)/2

Let AB=AC=x

x+x+5=40

2x+5=40

2x=40-5

x=35/2

x=17.5cm

Now using formula,

s=40/2=20

√20(20-17.5)(20-17.5)(20-5)

=√20(2.5)(2.5)(15)

=√20(93.75)

=√1875

=43.30cm²

Answered by sakshisingh27
0

Answer:

hii

baby here is your answer

Step-by-step explanation:

Heron's formula=√s(s-a)(s-b)(s-c)           where s=perimeter of triangle/2

                                                                             s=(a+b+c)/2

Let AB=AC=x

x+x+5=40

2x+5=40

2x=40-5

x=35/2

x=17.5cm

Now using formula,

s=40/2=20

√20(20-17.5)(20-17.5)(20-5)

=√20(2.5)(2.5)(15)

=√20(93.75)

=√1875

=43.30cm²

Similar questions