Math, asked by sivadas, 1 year ago

using herons formula find area of an equilateral triangle with side 16 cm

Answers

Answered by sarunsingla
10
formula of herons is s=a+b+c/2
all sides of equilateral triangle are same
so 16+16+16/2=48/2 =24
24 is answer it helps you thanks
Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=110.85\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle =16 cm,16 cm,16 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{16+16+ 16}{2} \\ \\ : \implies s = \frac{48}{2} \\ \\ \green{ : \implies s = 24} \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{24(24- 16)(24-16)(24- 16)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{24\times 8\times 8\times 8} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{12288} \\ \\ : \implies \text{Area \: of \: triangle =}110.85\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 110.85\: {cm}}^{2} }

Similar questions