Math, asked by nikhilkumishra84311, 1 year ago

Using herons formula ,find the area of an equalidatoral triangle which side is 10cm

Answers

Answered by pragya89
0
here is your answer.
Attachments:
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=43.3\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle =10 cm,10 cm,10 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{10+ 10+ 10}{2} \\ \\ : \implies s = \frac{30}{2} \\ \\ \green{ : \implies s = 15} \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{15(15- 10)(15-10)(15- 10)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{15\times 5\times 5\times 5} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{1875} \\ \\ : \implies \text{Area \: of \: triangle =}43.3\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 43.3\: {cm}}^{2} }

Similar questions