Math, asked by sharxn125, 8 months ago

using herons formula find the sides 20,20,24​

Answers

Answered by Anonymous
1

Answer:

s= a+b+c/2

so s=64/2=32

area of heron formula= √s(s-a)(s-b)(s-c)

=√32(32-20)(32-20)(32-24)

=√32×12×12×18

=4×2×3×3×2√2

144√2

.

.

. please follow me & mark me in brainliest

Answered by Anonymous
8

ANSWER

\large\underline\bold{GIVEN,}

\sf\therefore side\:of\:triangle,

\sf\dashrightarrow a=20

\sf\dashrightarrow b=20

\sf\dashrightarrow c=24

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow\text{area of triangle (by using herons formula.}

✯.FOMULA IN USE,

\large{\boxed{\bf{ \star\:\:AREA\:OF\: TRIANGLE= \sqrt{ s(s-a)(s-b)(s-c)} \:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore \text{ here,we don't know the value of 's'.}

\sf\therefore we\:know,

\bf{\:\:\:\:\:\:\:\:\:\:\:\dashrightarrow s=\dfrac{ a+b+c}{2} }

\sf\implies s= \dfrac{20+20+24}{2}

\sf\implies s= \dfrac{64}{2}

\sf\implies s=\cancel \dfrac{64}{2}

\sf\implies s= 32

\large{\boxed{\bf{ \star\:\: s=32\:\: \star}}}

\sf\large\therefore\text{ Now, putting all the values in the formula.we get,}

\sf\dashrightarrow \sqrt{32(32-20)(32-20)(32-24)}

\sf\implies \sqrt{32(12)(12)(8)}

\sf\implies 12 \sqrt{ 32 \times 8}

\sf\implies 12 \sqrt{256}

\sf\implies  12 \times 16

\sf\implies 192sq.units

\large{\boxed{\bf{ \star\:\: AREA\:OF\:TRIANGLE=192\:sq.units\:\: \star}}}

\large\underline\bold{AREA\:OF\:TRIANGLE\:IS\:192\:sq.units}

_________________

Similar questions