Math, asked by gawandeapurva044, 3 months ago

using identical evaluate ( 107×93)​

Answers

Answered by debnathabhishek914
1

Using the identity (a+b)(a−b)=a

Using the identity (a+b)(a−b)=a 2

Using the identity (a+b)(a−b)=a 2 −b

Using the identity (a+b)(a−b)=a 2 −b 2

Using the identity (a+b)(a−b)=a 2 −b 2

Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7

Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100

Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2

Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7

Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7 2

Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7 2 =10000−49 = 9951

Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7 2 =10000−49 = 9951Hence the answer is 9951

Similar questions