using identical evaluate ( 107×93)
Answers
Using the identity (a+b)(a−b)=a
Using the identity (a+b)(a−b)=a 2
Using the identity (a+b)(a−b)=a 2 −b
Using the identity (a+b)(a−b)=a 2 −b 2
Using the identity (a+b)(a−b)=a 2 −b 2
Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7
Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100
Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2
Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7
Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7 2
Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7 2 =10000−49 = 9951
Using the identity (a+b)(a−b)=a 2 −b 2 We can write: 107=100+7 and 93=100−7after using formula we get: (100+7)(100−7) = 100 2 −7 2 =10000−49 = 9951Hence the answer is 9951