using identies find the product of (x-y) ^4and(x+y)^4
Answers
Answered by
1
We use the identities:
(x+y) (x-y) = x² - y²
(x + y)² = x² + y² + 2xy
(x + y + z)² = x² + y² + z² + 2 xy + 2 yz + 2 zx
( x y )ⁿ = xⁿ yⁿ
xᵇ xᵃ = x⁽ᵃ⁺ᵇ⁾
(x-y)⁴ (x+y)⁴
= [(x-y) (x+y)]⁴ = (x² - y²)⁴
= [(x² - y²)² ]²
= [x⁴ + y⁴ - 2 x² y²] ²
= x⁸ + y⁸ + 4 x⁴ y⁴ + 2 x⁴ y⁴ - 4 x² y⁶ - 4 x⁶ y²
(x+y) (x-y) = x² - y²
(x + y)² = x² + y² + 2xy
(x + y + z)² = x² + y² + z² + 2 xy + 2 yz + 2 zx
( x y )ⁿ = xⁿ yⁿ
xᵇ xᵃ = x⁽ᵃ⁺ᵇ⁾
(x-y)⁴ (x+y)⁴
= [(x-y) (x+y)]⁴ = (x² - y²)⁴
= [(x² - y²)² ]²
= [x⁴ + y⁴ - 2 x² y²] ²
= x⁸ + y⁸ + 4 x⁴ y⁴ + 2 x⁴ y⁴ - 4 x² y⁶ - 4 x⁶ y²
kvnmurty:
pls click on red hearts thanks button above pls
Similar questions