Using Identities evaluate
206 x 202
Answers
Answer:
(202+4) (202-4) =(202) ^2-(4) ^2=40, 788
Answer:
(206-4)² x (202+4)²
(206-4)² x (202+4)²(a-b)²= a²+b²-2ab
(206-4)² x (202+4)²(a-b)²= a²+b²-2ab(a+b)²= a²+b²+2ab
(206-4)² x (202+4)²(a-b)²= a²+b²-2ab(a+b)²= a²+b²+2aba=206 and b= 4
(206-4)² x (202+4)²(a-b)²= a²+b²-2ab(a+b)²= a²+b²+2aba=206 and b= 4(206²+4²-2x206*4) x (206²+4²+2x206*4)
(206-4)² x (202+4)²(a-b)²= a²+b²-2ab(a+b)²= a²+b²+2aba=206 and b= 4(206²+4²-2x206*4) x (206²+4²+2x206*4)(42,436+16-1648) x (42,436+16+1648)
(206-4)² x (202+4)²(a-b)²= a²+b²-2ab(a+b)²= a²+b²+2aba=206 and b= 4(206²+4²-2x206*4) x (206²+4²+2x206*4)(42,436+16-1648) x (42,436+16+1648)(40,804) x (44,100)
(206-4)² x (202+4)²(a-b)²= a²+b²-2ab(a+b)²= a²+b²+2aba=206 and b= 4(206²+4²-2x206*4) x (206²+4²+2x206*4)(42,436+16-1648) x (42,436+16+1648)(40,804) x (44,100)1,799,456,400= answer.