Math, asked by velusamy1947p, 7 hours ago

Using identities evaluate 99²​

Answers

Answered by NITESH761
2

Answer:

\rm  9801

Step-by-step explanation:

By using identity,

\boxed{\rm (a-b)^2 = a^2+b^2-2ab}

\rm 99^2 = (100-1)^2

\rm (100-1)^2= 100^2+1^2-2(100)(1)

\rm  =  10000+1-200

\rm = 9800+1

\rm = 9801

Answered by Anonymous
5

\blue{\large\bf\underline{Answer \: and \: Explaination}}

\sf{{99}^{2}}

\sf = {{(100 - 1)}^{2}}

⬇️

\sf{It \: is \: in \: the \: form \:  {(a - b)}^{2} \: and \:  {(a - b)}^{2} =  {a}^{2} - 2ab +  {b}^{2}}

\sf{a = 100}

\sf{b = 1}

\sf{{(100 - 1)}^{2} =  {100}^{2} - 2(100)(1) +  {1}^{2}}

 \sf{ = 10000 - 200 + 1}

\sf{ = 10000 - 199}

\sf{ = 9801}

\blue{\sf\boxed{\sf{\therefore{Answer = 9801}}}}

\bf\pink{\underline{✌Be \: happy✌}}

Similar questions