Math, asked by 208bhattsaraswati, 11 months ago

using identities evaluate it
704​

Answers

Answered by Brâiñlynêha
2

\huge\mathtt{\underline{\underline{\red{SOLUTION:-}}}}

By using the identity of :-

\sf\implies (a+b){}^{2}

where in the place of a=700 and the place of b =4

Then :-

we know that \sf (a+b){}^{2}=a{}^{2}+b{}^{2}+2ab

Now :-

\mathtt{\underline{\underline{\red{According\:to\: question:-}}}}

\sf\longrightarrow (700+4){}^{2}\\ \\ \sf\longrightarrow (700){}^{2}+(4){}^{2}+2\times700\times4\\ \\ \sf\longrightarrow 490000+16+5600\\ \\ \sf\implies 4,95,616

\boxed{\red{\bold{4,95,616}}}

Answered by 3CHANDNI339
3

┏─━─━─━─━∞◆∞━─━─━─━─┓

✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✭✮

┗─━─━─━─━∞◆∞━─━─━─━─┛

 \mathbb{SOLUTION}

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

By using identity of,

 =  > (a + b)^{2}

Where in place of a=700 and the place of b=4

THEN,

WE KNOW THAT,

(a + b)^{2}  =  {a}^{2}  +  {b}^{2} + 2ab

ACCORDING TO QUESTION:

 =  > (700 + 4)^{2}

(700) {}^{2}  + (4 {}^{2} ) + 2 + \times 700 \times 4

490000 + 16 + 5600

 =  > 495616

▀▄ [ANSWER]▄▀

=495616

✨ŤHÁŃKŚ✨

#BAL

#Answerwithquality

Similar questions